gptq_model / oldhandler.py
ssaroya's picture
Rename handler.py to oldhandler.py
5061642
import torch
import transformers
import quant
from typing import Dict, Any
from gptq import GPTQ
from utils import find_layers, DEV
from transformers import AutoTokenizer, LlamaConfig, LlamaForCausalLM
import os
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
class EndpointHandler:
def __init__(self,
path="",
model_name="Wizard-Vicuna-13B-Uncensored-GPTQ",
checkpoint_path="Wizard-Vicuna-13B-Uncensored-GPTQ/Wizard-Vicuna-13B-Uncensored-GPTQ-4bit-128g.compat.no-act-order.safetensors",
wbits = 4,
groupsize=128,
fused_mlp=True,
eval=True,
warmup_autotune=True):
model_name = os.path.join(path, model_name)
checkpoint_path = os.path.join(path, checkpoint_path)
self.model = self.load_quant(model_name, checkpoint_path, wbits, groupsize, fused_mlp, eval, warmup_autotune)
self.tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
self.model.to(DEV)
def load_quant(self, model, checkpoint, wbits, groupsize, fused_mlp, eval, warmup_autotune):
config = LlamaConfig.from_pretrained(model)
def noop(*args, **kwargs):
pass
torch.nn.init.kaiming_uniform_ = noop
torch.nn.init.uniform_ = noop
torch.nn.init.normal_ = noop
torch.set_default_dtype(torch.half)
transformers.modeling_utils._init_weights = False
model = LlamaForCausalLM(config)
torch.set_default_dtype(torch.float)
if eval:
model = model.eval()
layers = find_layers(model)
for name in ['lm_head']:
if name in layers:
del layers[name]
quant.make_quant_linear(model, layers, wbits, groupsize)
del layers
print('Loading model ...')
if checkpoint.endswith('.safetensors'):
from safetensors.torch import load_file as safe_load
model.load_state_dict(safe_load(checkpoint), strict=False)
else:
model.load_state_dict(torch.load(checkpoint), strict=False)
if eval:
quant.make_quant_attn(model)
quant.make_quant_norm(model)
if fused_mlp:
quant.make_fused_mlp(model)
if warmup_autotune:
quant.autotune_warmup_linear(model, transpose=not (eval))
if eval and fused_mlp:
quant.autotune_warmup_fused(model)
model.seqlen = 2048
print('Done.')
return model
def __call__(self, data: Any) -> Dict[str, str]:
input_text = data.pop("inputs", data)
input_ids = self.tokenizer.encode(input_text, return_tensors="pt").to(DEV)
with torch.no_grad():
generated_ids = self.model.generate(
input_ids,
do_sample=True,
min_length=50,
max_length=200,
top_p=0.95,
temperature=0.8,
)
generated_text = self.tokenizer.decode([el.item() for el in generated_ids[0]])
return {'generated_text': generated_text}