|
import argparse |
|
|
|
import torch |
|
import torch.nn as nn |
|
import quant |
|
|
|
from gptq import GPTQ |
|
from utils import find_layers, DEV, set_seed, get_wikitext2, get_ptb, get_c4, get_ptb_new, get_c4_new, get_loaders |
|
import transformers |
|
from transformers import AutoTokenizer |
|
|
|
|
|
def get_llama(model): |
|
|
|
def skip(*args, **kwargs): |
|
pass |
|
|
|
torch.nn.init.kaiming_uniform_ = skip |
|
torch.nn.init.uniform_ = skip |
|
torch.nn.init.normal_ = skip |
|
from transformers import LlamaForCausalLM |
|
model = LlamaForCausalLM.from_pretrained(model, torch_dtype='auto') |
|
model.seqlen = 2048 |
|
return model |
|
|
|
|
|
def load_quant(model, checkpoint, wbits, groupsize=-1, fused_mlp=True, eval=True, warmup_autotune=True): |
|
from transformers import LlamaConfig, LlamaForCausalLM |
|
config = LlamaConfig.from_pretrained(model) |
|
|
|
def noop(*args, **kwargs): |
|
pass |
|
|
|
torch.nn.init.kaiming_uniform_ = noop |
|
torch.nn.init.uniform_ = noop |
|
torch.nn.init.normal_ = noop |
|
|
|
torch.set_default_dtype(torch.half) |
|
transformers.modeling_utils._init_weights = False |
|
torch.set_default_dtype(torch.half) |
|
model = LlamaForCausalLM(config) |
|
torch.set_default_dtype(torch.float) |
|
if eval: |
|
model = model.eval() |
|
layers = find_layers(model) |
|
for name in ['lm_head']: |
|
if name in layers: |
|
del layers[name] |
|
quant.make_quant_linear(model, layers, wbits, groupsize) |
|
|
|
del layers |
|
|
|
print('Loading model ...') |
|
if checkpoint.endswith('.safetensors'): |
|
from safetensors.torch import load_file as safe_load |
|
model.load_state_dict(safe_load(checkpoint), strict=False) |
|
else: |
|
model.load_state_dict(torch.load(checkpoint), strict=False) |
|
|
|
if eval: |
|
quant.make_quant_attn(model) |
|
quant.make_quant_norm(model) |
|
if fused_mlp: |
|
quant.make_fused_mlp(model) |
|
if warmup_autotune: |
|
quant.autotune_warmup_linear(model, transpose=not (eval)) |
|
if eval and fused_mlp: |
|
quant.autotune_warmup_fused(model) |
|
model.seqlen = 2048 |
|
print('Done.') |
|
|
|
return model |
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument('model', type=str, help='llama model to load') |
|
parser.add_argument('--wbits', type=int, default=16, choices=[2, 3, 4, 8, 16], help='#bits to use for quantization; use 16 for evaluating base model.') |
|
parser.add_argument('--groupsize', type=int, default=-1, help='Groupsize to use for quantization; default uses full row.') |
|
parser.add_argument('--load', type=str, default='', help='Load quantized model.') |
|
|
|
parser.add_argument('--text', type=str, help='input text') |
|
|
|
parser.add_argument('--min_length', type=int, default=10, help='The minimum length of the sequence to be generated.') |
|
|
|
parser.add_argument('--max_length', type=int, default=50, help='The maximum length of the sequence to be generated.') |
|
|
|
parser.add_argument('--top_p', |
|
type=float, |
|
default=0.95, |
|
help='If set to float < 1, only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation.') |
|
|
|
parser.add_argument('--temperature', type=float, default=0.8, help='The value used to module the next token probabilities.') |
|
|
|
parser.add_argument('--device', type=int, default=-1, help='The device used to load the model when using safetensors. Default device is "cpu" or specify, 0,1,2,3,... for GPU device.') |
|
|
|
args = parser.parse_args() |
|
|
|
if type(args.load) is not str: |
|
args.load = args.load.as_posix() |
|
|
|
if args.load: |
|
model = load_quant(args.model, args.load, args.wbits, args.groupsize) |
|
else: |
|
model = get_llama(args.model) |
|
model.eval() |
|
|
|
model.to(DEV) |
|
tokenizer = AutoTokenizer.from_pretrained(args.model, use_fast=False) |
|
input_ids = tokenizer.encode(args.text, return_tensors="pt").to(DEV) |
|
|
|
with torch.no_grad(): |
|
generated_ids = model.generate( |
|
input_ids, |
|
do_sample=True, |
|
min_length=args.min_length, |
|
max_length=args.max_length, |
|
top_p=args.top_p, |
|
temperature=args.temperature, |
|
) |
|
print(tokenizer.decode([el.item() for el in generated_ids[0]])) |
|
|