gptq_model / handler.py
ssaroya's picture
Update handler.py
e660f8f
import torch
import transformers
import quant
from typing import Dict, Any
from gptq import GPTQ
from utils import find_layers, DEV
from transformers import AutoTokenizer, LlamaConfig, LlamaForCausalLM
import os
import pickle
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
class EndpointHandler:
def __init__(self, path=""):
model_bin_path = os.path.join(path, "model.bin")
model_folder_path = model_name = os.path.join(path, "Wizard-Vicuna-13B-Uncensored-GPTQ")
with open(model_bin_path, "rb") as f: # "rb" because we want to read in binary mode
self.model = pickle.load(f)
self.tokenizer = AutoTokenizer.from_pretrained(model_folder_path, use_fast=False)
self.model.to(DEV)
def __call__(self, data: Any) -> Dict[str, str]:
input_text = data.pop("inputs", data)
input_ids = self.tokenizer.encode(input_text, return_tensors="pt").to(DEV)
with torch.no_grad():
generated_ids = self.model.generate(
input_ids,
do_sample=True,
min_length=50,
max_length=len(input_ids[0])+250,
top_p=0.95,
temperature=0.8,
)
generated_text = self.tokenizer.decode([el.item() for el in generated_ids[0]])
return {'generated_text': generated_text}