|
import torch |
|
import transformers |
|
import quant |
|
from typing import Dict, Any |
|
from gptq import GPTQ |
|
from utils import find_layers, DEV |
|
from transformers import AutoTokenizer, LlamaConfig, LlamaForCausalLM |
|
import os |
|
import pickle |
|
|
|
import os |
|
os.environ["CUDA_VISIBLE_DEVICES"] = "0" |
|
|
|
class EndpointHandler: |
|
def __init__(self, path=""): |
|
model_bin_path = os.path.join(path, "model.bin") |
|
model_folder_path = model_name = os.path.join(path, "Wizard-Vicuna-13B-Uncensored-GPTQ") |
|
|
|
with open(model_bin_path, "rb") as f: |
|
self.model = pickle.load(f) |
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained(model_folder_path, use_fast=False) |
|
self.model.to(DEV) |
|
|
|
|
|
|
|
def __call__(self, data: Any) -> Dict[str, str]: |
|
input_text = data.pop("inputs", data) |
|
input_ids = self.tokenizer.encode(input_text, return_tensors="pt").to(DEV) |
|
|
|
with torch.no_grad(): |
|
generated_ids = self.model.generate( |
|
input_ids, |
|
do_sample=True, |
|
min_length=50, |
|
max_length=len(input_ids[0])+250, |
|
top_p=0.95, |
|
temperature=0.8, |
|
) |
|
generated_text = self.tokenizer.decode([el.item() for el in generated_ids[0]]) |
|
|
|
return {'generated_text': generated_text} |