|
from torch.nn import functional as F |
|
from transformers.models.llama.modeling_llama import LlamaAttention |
|
from .quant_linear import * |
|
import triton |
|
import triton.language as tl |
|
|
|
|
|
@triton.jit |
|
def rotate_half_kernel( |
|
qk_seq_ptr, |
|
position_ids_ptr, |
|
qk_seq_stride, |
|
position_ids_batch_stride, |
|
seq_len, |
|
HEAD_DIM: tl.constexpr, |
|
BLOCK_HEIGHT: tl.constexpr, |
|
BLOCK_WIDTH: tl.constexpr, |
|
INV_BASE: tl.constexpr |
|
): |
|
|
|
|
|
|
|
HALF_HEAD: tl.constexpr = HEAD_DIM // 2 |
|
STEPS_PER_ROW: tl.constexpr = HALF_HEAD // BLOCK_WIDTH |
|
|
|
batch_seq = tl.program_id(axis=0) |
|
row_blk_x_col_blk = tl.program_id(axis=1) |
|
|
|
row_blk = row_blk_x_col_blk // STEPS_PER_ROW |
|
row = row_blk * BLOCK_HEIGHT |
|
if BLOCK_WIDTH < HALF_HEAD: |
|
col_blk = row_blk_x_col_blk % STEPS_PER_ROW |
|
col = col_blk * BLOCK_WIDTH |
|
else: |
|
col: tl.constexpr = 0 |
|
|
|
|
|
batch = batch_seq // seq_len |
|
seq = batch_seq % seq_len |
|
position_id = tl.load(position_ids_ptr + batch * position_ids_batch_stride + seq) |
|
|
|
|
|
freq = tl.libdevice.exp((col + tl.arange(0, BLOCK_WIDTH)).to(tl.float32) * INV_BASE) * position_id |
|
cos = tl.cos(freq).to(tl.float32) |
|
sin = tl.sin(freq).to(tl.float32) |
|
|
|
col_offsets: tl.constexpr = tl.arange(0, BLOCK_WIDTH) |
|
embed_offsets = (row * HEAD_DIM + col) + col_offsets |
|
x_ptrs = (qk_seq_ptr + batch_seq * qk_seq_stride) + embed_offsets |
|
|
|
for k in range(0, BLOCK_HEIGHT): |
|
x = tl.load(x_ptrs).to(tl.float32) |
|
y = tl.load(x_ptrs + HALF_HEAD).to(tl.float32) |
|
out_x = x * cos - y * sin |
|
tl.store(x_ptrs, out_x) |
|
out_y = x * sin + y * cos |
|
tl.store(x_ptrs + HALF_HEAD, out_y) |
|
x_ptrs += HEAD_DIM |
|
|
|
|
|
def triton_rotate_half_(qk, position_ids, config=None): |
|
batch_size, seq_len, qandk, num_heads, head_dim = qk.shape |
|
|
|
|
|
config = config or {'BLOCK_HEIGHT': 1, 'BLOCK_WIDTH': min(128, head_dim // 2), 'num_warps': 1} |
|
config['BLOCK_HEIGHT'] = min(config['BLOCK_HEIGHT'], 2 * num_heads) |
|
|
|
assert qk.stride(3) == head_dim |
|
assert qk.stride(4) == 1 |
|
assert position_ids.shape == (batch_size, seq_len) |
|
assert position_ids.stride(1) == 1, 'position_ids must be contiguous in the last dimension' |
|
assert (2 * num_heads) % config['BLOCK_HEIGHT'] == 0, f'number of rows not evenly divisible by {config["BLOCK_HEIGHT"]}' |
|
assert (head_dim // 2) % config['BLOCK_WIDTH'] == 0, f'number of columns ({head_dim // 2}) not evenly divisible by {config["BLOCK_WIDTH"]}' |
|
|
|
qk_by_seq = qk.view(batch_size * seq_len, 2 * num_heads * head_dim) |
|
grid = (qk_by_seq.shape[0], (2 * num_heads // config['BLOCK_HEIGHT']) * (head_dim // 2 // config['BLOCK_WIDTH'])) |
|
|
|
|
|
BASE = 10000.0 |
|
|
|
rotate_half_kernel[grid]( |
|
qk_by_seq, |
|
position_ids, |
|
qk_by_seq.stride(0), |
|
position_ids.stride(0), |
|
seq_len, |
|
HEAD_DIM=head_dim, |
|
BLOCK_HEIGHT=config['BLOCK_HEIGHT'], |
|
BLOCK_WIDTH=config['BLOCK_WIDTH'], |
|
INV_BASE=-2.0 * math.log(BASE) / head_dim, |
|
num_warps=config['num_warps'] |
|
) |
|
|
|
|
|
class QuantLlamaAttention(nn.Module): |
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
def __init__( |
|
self, |
|
hidden_size, |
|
num_heads, |
|
qkv_proj, |
|
o_proj |
|
): |
|
super().__init__() |
|
self.hidden_size = hidden_size |
|
self.num_heads = num_heads |
|
self.head_dim = hidden_size // num_heads |
|
|
|
if (self.head_dim * num_heads) != self.hidden_size: |
|
raise ValueError(f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" |
|
f" and `num_heads`: {num_heads}).") |
|
self.qkv_proj = qkv_proj |
|
self.o_proj = o_proj |
|
|
|
def forward(self, hidden_states, past_key_value=None, attention_mask=None, position_ids=None, output_attentions=False, use_cache=False): |
|
"""Input shape: Batch x Time x Channel""" |
|
|
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
qkv_states = self.qkv_proj(hidden_states) |
|
qkv_states = qkv_states.view(bsz, q_len, 3, self.num_heads, self.head_dim) |
|
|
|
|
|
triton_rotate_half_(qkv_states[:, :, :2], position_ids) |
|
|
|
query_states, key_states, value_states = torch.split(qkv_states, 1, dim=2) |
|
del qkv_states |
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
key_states = key_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
value_states = value_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
|
|
is_causal = past_key_value is None |
|
|
|
kv_seq_len = q_len |
|
if past_key_value is not None: |
|
kv_seq_len += past_key_value[0].shape[-2] |
|
|
|
if past_key_value is not None: |
|
|
|
key_states = torch.cat([past_key_value[0], key_states], dim=2) |
|
value_states = torch.cat([past_key_value[1], value_states], dim=2) |
|
|
|
if use_cache: |
|
|
|
|
|
key_states = key_states.contiguous() |
|
value_states = value_states.contiguous() |
|
query_states = query_states.contiguous() |
|
|
|
past_key_value = (key_states, value_states) if use_cache else None |
|
|
|
with torch.backends.cuda.sdp_kernel(enable_math=False): |
|
attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states, is_causal=is_causal) |
|
del query_states, key_states, value_states |
|
|
|
attn_output = attn_output.transpose(1, 2).reshape(bsz, q_len, self.hidden_size) |
|
attn_output = self.o_proj(attn_output) |
|
|
|
return attn_output, None, past_key_value |
|
|
|
|
|
def make_quant_attn(model): |
|
""" |
|
Replace all LlamaAttention modules with QuantLlamaAttention modules, fusing the q, k, v projections. |
|
""" |
|
|
|
for name, m in model.named_modules(): |
|
if not isinstance(m, LlamaAttention): |
|
continue |
|
|
|
q_proj = m.q_proj |
|
k_proj = m.k_proj |
|
v_proj = m.v_proj |
|
|
|
qweights = torch.cat([q_proj.qweight, k_proj.qweight, v_proj.qweight], dim=1) |
|
qzeros = torch.cat([q_proj.qzeros, k_proj.qzeros, v_proj.qzeros], dim=1) |
|
scales = torch.cat([q_proj.scales, k_proj.scales, v_proj.scales], dim=1) |
|
g_idx = torch.cat([q_proj.g_idx, k_proj.g_idx, v_proj.g_idx], dim=0) |
|
bias = torch.cat([q_proj.bias, k_proj.bias, v_proj.bias], dim=0) if q_proj.bias is not None else None |
|
|
|
qkv_layer = QuantLinear(q_proj.bits, q_proj.groupsize, q_proj.infeatures, q_proj.outfeatures + k_proj.outfeatures + v_proj.outfeatures, True if q_proj.bias is not None else False) |
|
qkv_layer.qweight = qweights |
|
qkv_layer.qzeros = qzeros |
|
qkv_layer.scales = scales |
|
qkv_layer.g_idx = g_idx |
|
qkv_layer.bias = bias |
|
|
|
|
|
attn = QuantLlamaAttention(m.hidden_size, m.num_heads, qkv_layer, m.o_proj) |
|
|
|
if '.' in name: |
|
parent_name = name.rsplit('.', 1)[0] |
|
child_name = name[len(parent_name) + 1:] |
|
parent = model.get_submodule(parent_name) |
|
else: |
|
parent_name = '' |
|
parent = model |
|
child_name = name |
|
|
|
|
|
|
|
setattr(parent, child_name, attn) |
|
|