gptq_model / quant /fused_attn.py
ssaroya's picture
Upload 7 files
401522d
raw
history blame
8.6 kB
from torch.nn import functional as F
from transformers.models.llama.modeling_llama import LlamaAttention
from .quant_linear import *
import triton
import triton.language as tl
@triton.jit
def rotate_half_kernel(
qk_seq_ptr,
position_ids_ptr,
qk_seq_stride,
position_ids_batch_stride,
seq_len,
HEAD_DIM: tl.constexpr,
BLOCK_HEIGHT: tl.constexpr,
BLOCK_WIDTH: tl.constexpr,
INV_BASE: tl.constexpr
):
# qk_seq_ptr: (bsz, seq_len, 2, num_heads, head_dim) -- OK to be discontinuous in 2nd dimension.
# position ids: (bsz, seq_len) -- must be contiguous in the last dimension.
HALF_HEAD: tl.constexpr = HEAD_DIM // 2
STEPS_PER_ROW: tl.constexpr = HALF_HEAD // BLOCK_WIDTH
batch_seq = tl.program_id(axis=0)
row_blk_x_col_blk = tl.program_id(axis=1)
row_blk = row_blk_x_col_blk // STEPS_PER_ROW
row = row_blk * BLOCK_HEIGHT
if BLOCK_WIDTH < HALF_HEAD:
col_blk = row_blk_x_col_blk % STEPS_PER_ROW
col = col_blk * BLOCK_WIDTH
else:
col: tl.constexpr = 0
# A block will never cross a sequence boundary, which simplifies things a lot.
batch = batch_seq // seq_len
seq = batch_seq % seq_len
position_id = tl.load(position_ids_ptr + batch * position_ids_batch_stride + seq)
# As sometimes happens, just calculating this on the fly is faster than loading it from memory.
# Use `tl.libdevice.exp` rather than `tl.exp` -- the latter is less accurate.
freq = tl.libdevice.exp((col + tl.arange(0, BLOCK_WIDTH)).to(tl.float32) * INV_BASE) * position_id
cos = tl.cos(freq).to(tl.float32)
sin = tl.sin(freq).to(tl.float32)
col_offsets: tl.constexpr = tl.arange(0, BLOCK_WIDTH)
embed_offsets = (row * HEAD_DIM + col) + col_offsets
x_ptrs = (qk_seq_ptr + batch_seq * qk_seq_stride) + embed_offsets
for k in range(0, BLOCK_HEIGHT):
x = tl.load(x_ptrs).to(tl.float32)
y = tl.load(x_ptrs + HALF_HEAD).to(tl.float32)
out_x = x * cos - y * sin
tl.store(x_ptrs, out_x)
out_y = x * sin + y * cos
tl.store(x_ptrs + HALF_HEAD, out_y)
x_ptrs += HEAD_DIM
def triton_rotate_half_(qk, position_ids, config=None):
batch_size, seq_len, qandk, num_heads, head_dim = qk.shape
# This default is the fastest for most job sizes, at least on my RTX 4090, and when it's not it's within spitting distance of the best option. There are some odd cases where having a block height of 2 or 4 helps but the difference is within 5%. It makes sense that this configuration is fast from a memory bandwidth and caching perspective.
config = config or {'BLOCK_HEIGHT': 1, 'BLOCK_WIDTH': min(128, head_dim // 2), 'num_warps': 1}
config['BLOCK_HEIGHT'] = min(config['BLOCK_HEIGHT'], 2 * num_heads)
assert qk.stride(3) == head_dim
assert qk.stride(4) == 1
assert position_ids.shape == (batch_size, seq_len)
assert position_ids.stride(1) == 1, 'position_ids must be contiguous in the last dimension'
assert (2 * num_heads) % config['BLOCK_HEIGHT'] == 0, f'number of rows not evenly divisible by {config["BLOCK_HEIGHT"]}'
assert (head_dim // 2) % config['BLOCK_WIDTH'] == 0, f'number of columns ({head_dim // 2}) not evenly divisible by {config["BLOCK_WIDTH"]}'
qk_by_seq = qk.view(batch_size * seq_len, 2 * num_heads * head_dim)
grid = (qk_by_seq.shape[0], (2 * num_heads // config['BLOCK_HEIGHT']) * (head_dim // 2 // config['BLOCK_WIDTH']))
# Must be the same as the theta of the frequencies used to train the model.
BASE = 10000.0
rotate_half_kernel[grid](
qk_by_seq,
position_ids,
qk_by_seq.stride(0),
position_ids.stride(0),
seq_len,
HEAD_DIM=head_dim,
BLOCK_HEIGHT=config['BLOCK_HEIGHT'],
BLOCK_WIDTH=config['BLOCK_WIDTH'],
INV_BASE=-2.0 * math.log(BASE) / head_dim,
num_warps=config['num_warps']
)
class QuantLlamaAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
hidden_size,
num_heads,
qkv_proj,
o_proj
):
super().__init__()
self.hidden_size = hidden_size
self.num_heads = num_heads
self.head_dim = hidden_size // num_heads
if (self.head_dim * num_heads) != self.hidden_size:
raise ValueError(f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
f" and `num_heads`: {num_heads}).")
self.qkv_proj = qkv_proj
self.o_proj = o_proj
def forward(self, hidden_states, past_key_value=None, attention_mask=None, position_ids=None, output_attentions=False, use_cache=False):
"""Input shape: Batch x Time x Channel"""
bsz, q_len, _ = hidden_states.size()
qkv_states = self.qkv_proj(hidden_states)
qkv_states = qkv_states.view(bsz, q_len, 3, self.num_heads, self.head_dim)
# This updates the query and key states in-place, saving VRAM.
triton_rotate_half_(qkv_states[:, :, :2], position_ids)
query_states, key_states, value_states = torch.split(qkv_states, 1, dim=2)
del qkv_states
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
is_causal = past_key_value is None
kv_seq_len = q_len
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
if past_key_value is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
if use_cache:
# Since qkv_proj is fused, query_states etc will hold a reference to the original qkv_states tensor
# which can cause excessive memory usage by the cache. `contiguous` is a convenient way to workaround this.
key_states = key_states.contiguous()
value_states = value_states.contiguous()
query_states = query_states.contiguous()
past_key_value = (key_states, value_states) if use_cache else None
with torch.backends.cuda.sdp_kernel(enable_math=False):
attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states, is_causal=is_causal)
del query_states, key_states, value_states
attn_output = attn_output.transpose(1, 2).reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
return attn_output, None, past_key_value
def make_quant_attn(model):
"""
Replace all LlamaAttention modules with QuantLlamaAttention modules, fusing the q, k, v projections.
"""
for name, m in model.named_modules():
if not isinstance(m, LlamaAttention):
continue
q_proj = m.q_proj
k_proj = m.k_proj
v_proj = m.v_proj
qweights = torch.cat([q_proj.qweight, k_proj.qweight, v_proj.qweight], dim=1)
qzeros = torch.cat([q_proj.qzeros, k_proj.qzeros, v_proj.qzeros], dim=1)
scales = torch.cat([q_proj.scales, k_proj.scales, v_proj.scales], dim=1)
g_idx = torch.cat([q_proj.g_idx, k_proj.g_idx, v_proj.g_idx], dim=0)
bias = torch.cat([q_proj.bias, k_proj.bias, v_proj.bias], dim=0) if q_proj.bias is not None else None
qkv_layer = QuantLinear(q_proj.bits, q_proj.groupsize, q_proj.infeatures, q_proj.outfeatures + k_proj.outfeatures + v_proj.outfeatures, True if q_proj.bias is not None else False)
qkv_layer.qweight = qweights
qkv_layer.qzeros = qzeros
qkv_layer.scales = scales
qkv_layer.g_idx = g_idx
qkv_layer.bias = bias
# We're dropping the rotary embedding layer m.rotary_emb here. We don't need it in the triton branch.
attn = QuantLlamaAttention(m.hidden_size, m.num_heads, qkv_layer, m.o_proj)
if '.' in name:
parent_name = name.rsplit('.', 1)[0]
child_name = name[len(parent_name) + 1:]
parent = model.get_submodule(parent_name)
else:
parent_name = ''
parent = model
child_name = name
#print(f"Replacing {name} with quant_attn; parent: {parent_name}, child's name: {child_name}")
setattr(parent, child_name, attn)