Mirco commited on
Commit
39e5ed6
·
1 Parent(s): 7e9e1bd

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -3
README.md CHANGED
@@ -164,7 +164,7 @@ language_id = EncoderClassifier.from_hparams(source="speechbrain/lang-id-voxling
164
  signal = language_id.load_audio("https://omniglot.com/soundfiles/udhr/udhr_th.mp3")
165
  prediction = language_id.classify_batch(signal)
166
  print(prediction)
167
- (tensor([[-2.8646e+01, -3.0346e+01, -2.0748e+01, -2.9562e+01, -2.2187e+01,
168
  -3.2668e+01, -3.6677e+01, -3.3573e+01, -3.2545e+01, -2.4365e+01,
169
  -2.4688e+01, -3.1171e+01, -2.7743e+01, -2.9918e+01, -2.4770e+01,
170
  -3.2250e+01, -2.4727e+01, -2.6087e+01, -2.1870e+01, -3.2821e+01,
@@ -190,10 +190,10 @@ print(prediction)
190
  # the given utterance belongs to the given language (i.e., the larger the better)
191
  # The linear-scale likelihood can be retrieved using the following:
192
  print(prediction[1].exp())
193
- tensor([0.9850])
194
  # The identified language ISO code is given in prediction[3]
195
  print(prediction[3])
196
- ['th: Thai']
197
 
198
  # Alternatively, use the utterance embedding extractor:
199
  emb = language_id.encode_batch(signal)
 
164
  signal = language_id.load_audio("https://omniglot.com/soundfiles/udhr/udhr_th.mp3")
165
  prediction = language_id.classify_batch(signal)
166
  print(prediction)
167
+ # (tensor([[-2.8646e+01, -3.0346e+01, -2.0748e+01, -2.9562e+01, -2.2187e+01,
168
  -3.2668e+01, -3.6677e+01, -3.3573e+01, -3.2545e+01, -2.4365e+01,
169
  -2.4688e+01, -3.1171e+01, -2.7743e+01, -2.9918e+01, -2.4770e+01,
170
  -3.2250e+01, -2.4727e+01, -2.6087e+01, -2.1870e+01, -3.2821e+01,
 
190
  # the given utterance belongs to the given language (i.e., the larger the better)
191
  # The linear-scale likelihood can be retrieved using the following:
192
  print(prediction[1].exp())
193
+ # tensor([0.9850])
194
  # The identified language ISO code is given in prediction[3]
195
  print(prediction[3])
196
+ # ['th: Thai']
197
 
198
  # Alternatively, use the utterance embedding extractor:
199
  emb = language_id.encode_batch(signal)