File size: 4,930 Bytes
14e4238 4aec8d8 14e4238 4aec8d8 14e4238 4aec8d8 14e4238 4aec8d8 14e4238 4aec8d8 87955d2 6256480 14e4238 4aec8d8 14e4238 4aec8d8 14e4238 4aec8d8 14e4238 87955d2 14e4238 4aec8d8 14e4238 4aec8d8 14e4238 4aec8d8 14e4238 4aec8d8 14e4238 4aec8d8 14e4238 4aec8d8 14e4238 6256480 14e4238 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
---
language: "en"
thumbnail:
tags:
- embeddings
- Commands
- Keywords
- Keyword Spotting
- pytorch
- xvectors
- TDNN
- Command Recognition
license: "apache-2.0"
datasets:
- google speech commands
metrics:
- Accuracy
---
<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
<br/><br/>
# Command Recognition with xvector embeddings on Google Speech Commands
This repository provides all the necessary tools to perform command recognition with SpeechBrain using a model pretrained on Google Speech Commands.
You can download the dataset [here](https://www.tensorflow.org/datasets/catalog/speech_commands)
The dataset provides small training, validation, and test sets useful for detecting single keywords in short audio clips. The provided system can recognize the following 12 keywords:
'yes','no','up','down','left','right','on','off','stop','go','unknown','silence'
For a better experience, we encourage you to learn more about
[SpeechBrain](https://speechbrain.github.io). The given model performance on the test set is:
| Release | Accuracy(%)
|:-------------:|:--------------:|
| 06-02-21 | 98.14 |
## Pipeline description
This system is composed of a TDNN model coupled with statistical pooling. A classifier, trained with Categorical Cross-Entropy Loss, is applied on top of that.
## Install SpeechBrain
First of all, please install SpeechBrain with the following command:
```
pip install speechbrain
```
Please notice that we encourage you to read our tutorials and learn more about
[SpeechBrain](https://speechbrain.github.io).
### Perform Command Recognition
```python
import torchaudio
from speechbrain.pretrained import EncoderClassifier
classifier = EncoderClassifier.from_hparams(source="speechbrain/google_speech_command_xvector", savedir="pretrained_models/google_speech_command_xvector")
out_prob, score, index, text_lab = classifier.classify_file('speechbrain/google_speech_command_xvector/yes.wav')
print(text_lab)
out_prob, score, index, text_lab = classifier.classify_file('speechbrain/google_speech_command_xvector/stop.wav')
print(text_lab)
```
### Inference on GPU
To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method.
### Training
The model was trained with SpeechBrain (b7ff9dc4).
To train it from scratch follows these steps:
1. Clone SpeechBrain:
```bash
git clone https://github.com/speechbrain/speechbrain/
```
2. Install it:
```
cd speechbrain
pip install -r requirements.txt
pip install -e .
```
3. Run Training:
```
cd recipes/Google-speech-commands
python train.py hparams/xvect.yaml --data_folder=your_data_folder
```
You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/1BKwtr1mBRICRe56PcQk2sCFq63Lsvdpc?usp=sharing).
### Limitations
The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.
#### Referencing xvectors
```@inproceedings{DBLP:conf/odyssey/SnyderGMSPK18,
author = {David Snyder and
Daniel Garcia{-}Romero and
Alan McCree and
Gregory Sell and
Daniel Povey and
Sanjeev Khudanpur},
title = {Spoken Language Recognition using X-vectors},
booktitle = {Odyssey 2018},
pages = {105--111},
year = {2018},
}
```
#### Referencing Google Speech Commands
```@article{speechcommands,
author = { {Warden}, P.},
title = "{Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition}",
journal = {ArXiv e-prints},
archivePrefix = "arXiv",
eprint = {1804.03209},
primaryClass = "cs.CL",
keywords = {Computer Science - Computation and Language, Computer Science - Human-Computer Interaction},
year = 2018,
month = apr,
url = {https://arxiv.org/abs/1804.03209},
}
```
#### Referencing SpeechBrain
```
@misc{SB2021,
author = {Ravanelli, Mirco and Parcollet, Titouan and Rouhe, Aku and Plantinga, Peter and Rastorgueva, Elena and Lugosch, Loren and Dawalatabad, Nauman and Ju-Chieh, Chou and Heba, Abdel and Grondin, Francois and Aris, William and Liao, Chien-Feng and Cornell, Samuele and Yeh, Sung-Lin and Na, Hwidong and Gao, Yan and Fu, Szu-Wei and Subakan, Cem and De Mori, Renato and Bengio, Yoshua },
title = {SpeechBrain},
year = {2021},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\\\\\\\\url{https://github.com/speechbrain/speechbrain}},
}
```
#### About SpeechBrain
SpeechBrain is an open-source and all-in-one speech toolkit. It is designed to be simple, extremely flexible, and user-friendly. Competitive or state-of-the-art performance is obtained in various domains.
Website: https://speechbrain.github.io/
GitHub: https://github.com/speechbrain/speechbrain
|