poonehmousavi
commited on
Commit
·
06f25b2
1
Parent(s):
04a099d
Update README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
language:
|
3 |
-
-
|
4 |
thumbnail: null
|
5 |
pipeline_tag: automatic-speech-recognition
|
6 |
tags:
|
@@ -10,36 +10,36 @@ tags:
|
|
10 |
- Transformer
|
11 |
license: apache-2.0
|
12 |
datasets:
|
13 |
-
- commonvoice
|
14 |
metrics:
|
15 |
- wer
|
16 |
- cer
|
17 |
model-index:
|
18 |
-
- name: asr-wav2vec2-commonvoice-
|
19 |
results:
|
20 |
- task:
|
21 |
name: Automatic Speech Recognition
|
22 |
type: automatic-speech-recognition
|
23 |
dataset:
|
24 |
-
name: CommonVoice Corpus
|
25 |
-
type: mozilla-foundation/
|
26 |
-
config:
|
27 |
split: test
|
28 |
args:
|
29 |
-
language:
|
30 |
metrics:
|
31 |
- name: Test WER
|
32 |
type: wer
|
33 |
-
value: '
|
34 |
---
|
35 |
|
36 |
<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
|
37 |
<br/><br/>
|
38 |
|
39 |
-
# wav2vec 2.0 with CTC trained on CommonVoice
|
40 |
|
41 |
This repository provides all the necessary tools to perform automatic speech
|
42 |
-
recognition from an end-to-end system pretrained on CommonVoice (
|
43 |
SpeechBrain. For a better experience, we encourage you to learn more about
|
44 |
[SpeechBrain](https://speechbrain.github.io).
|
45 |
|
@@ -47,14 +47,14 @@ The performance of the model is the following:
|
|
47 |
|
48 |
| Release | Test CER | Test WER | GPUs |
|
49 |
|:-------------:|:--------------:|:--------------:| :--------:|
|
50 |
-
|
|
51 |
|
52 |
## Pipeline description
|
53 |
|
54 |
This ASR system is composed of 2 different but linked blocks:
|
55 |
-
- Tokenizer (
|
56 |
-
the train transcriptions (train.tsv) of CommonVoice (
|
57 |
-
- Acoustic model (wav2vec2.0 + CTC). A pretrained wav2vec 2.0 model ([wav2vec2-large-
|
58 |
The obtained final acoustic representation is given to the CTC decoder.
|
59 |
|
60 |
The system is trained with recordings sampled at 16kHz (single channel).
|
@@ -71,13 +71,13 @@ pip install speechbrain transformers
|
|
71 |
Please notice that we encourage you to read our tutorials and learn more about
|
72 |
[SpeechBrain](https://speechbrain.github.io).
|
73 |
|
74 |
-
### Transcribing your own audio files (in
|
75 |
|
76 |
```python
|
77 |
from speechbrain.pretrained import EncoderASR
|
78 |
|
79 |
-
asr_model = EncoderASR.from_hparams(source="speechbrain/asr-wav2vec2-commonvoice-
|
80 |
-
asr_model.transcribe_file("speechbrain/asr-wav2vec2-commonvoice-
|
81 |
|
82 |
```
|
83 |
### Inference on GPU
|
|
|
1 |
---
|
2 |
language:
|
3 |
+
- en
|
4 |
thumbnail: null
|
5 |
pipeline_tag: automatic-speech-recognition
|
6 |
tags:
|
|
|
10 |
- Transformer
|
11 |
license: apache-2.0
|
12 |
datasets:
|
13 |
+
- commonvoice.14.0
|
14 |
metrics:
|
15 |
- wer
|
16 |
- cer
|
17 |
model-index:
|
18 |
+
- name: asr-wav2vec2-commonvoice-14-en
|
19 |
results:
|
20 |
- task:
|
21 |
name: Automatic Speech Recognition
|
22 |
type: automatic-speech-recognition
|
23 |
dataset:
|
24 |
+
name: CommonVoice Corpus 14.0/ (English)
|
25 |
+
type: mozilla-foundation/common_voice_14.0
|
26 |
+
config: en
|
27 |
split: test
|
28 |
args:
|
29 |
+
language: en
|
30 |
metrics:
|
31 |
- name: Test WER
|
32 |
type: wer
|
33 |
+
value: '16.68'
|
34 |
---
|
35 |
|
36 |
<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
|
37 |
<br/><br/>
|
38 |
|
39 |
+
# wav2vec 2.0 with CTC trained on CommonVoice English (No LM)
|
40 |
|
41 |
This repository provides all the necessary tools to perform automatic speech
|
42 |
+
recognition from an end-to-end system pretrained on CommonVoice (English Language) within
|
43 |
SpeechBrain. For a better experience, we encourage you to learn more about
|
44 |
[SpeechBrain](https://speechbrain.github.io).
|
45 |
|
|
|
47 |
|
48 |
| Release | Test CER | Test WER | GPUs |
|
49 |
|:-------------:|:--------------:|:--------------:| :--------:|
|
50 |
+
| 15-08-23 | 7.92 | 16.86 | 1xV100 32GB |
|
51 |
|
52 |
## Pipeline description
|
53 |
|
54 |
This ASR system is composed of 2 different but linked blocks:
|
55 |
+
- Tokenizer (unigram) that transforms words into unigrams and trained with
|
56 |
+
the train transcriptions (train.tsv) of CommonVoice (en).
|
57 |
+
- Acoustic model (wav2vec2.0 + CTC). A pretrained wav2vec 2.0 model ([wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60)) is combined with two DNN layers and finetuned on CommonVoice DE.
|
58 |
The obtained final acoustic representation is given to the CTC decoder.
|
59 |
|
60 |
The system is trained with recordings sampled at 16kHz (single channel).
|
|
|
71 |
Please notice that we encourage you to read our tutorials and learn more about
|
72 |
[SpeechBrain](https://speechbrain.github.io).
|
73 |
|
74 |
+
### Transcribing your own audio files (in English)
|
75 |
|
76 |
```python
|
77 |
from speechbrain.pretrained import EncoderASR
|
78 |
|
79 |
+
asr_model = EncoderASR.from_hparams(source="speechbrain/asr-wav2vec2-commonvoice-14-en", savedir="pretrained_models/asr-wav2vec2-commonvoice-14-en")
|
80 |
+
asr_model.transcribe_file("speechbrain/asr-wav2vec2-commonvoice-14-en/example-en.wav")
|
81 |
|
82 |
```
|
83 |
### Inference on GPU
|