File size: 2,734 Bytes
7ff95b4 6bbde74 7ff95b4 6fb11ea 7ff95b4 9d47cd4 7ff95b4 6bbde74 7ff95b4 974c646 7ff95b4 6bbde74 7ff95b4 f627588 6bbde74 7ff95b4 6bbde74 7ff95b4 2c2d948 7ff95b4 19baea8 7ff95b4 0b1a2e8 7ff95b4 0b1a2e8 49c8ad1 7ff95b4 6fb11ea 7ff95b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
language: "en"
thumbnail:
tags:
- ASR
- CTC
- Attention
- Transformer
- pytorch
- speechbrain
license: "apache-2.0"
datasets:
- librispeech
metrics:
- wer
- cer
---
# Transformer for LibriSpeech (with Transformer LM)
This repository provides all the necessary tools to perform automatic speech
recognition from an end-to-end system pretrained on LibriSpeech (EN) within
SpeechBrain. For a better experience, we encourage you to learn more about
[SpeechBrain](https://speechbrain.github.io). The given ASR model performance are:
| Release | Test clean WER | Test other WER | GPUs |
|:-------------:|:--------------:|:--------------:|:--------:|
| 05-03-21 | 2.46 | 5.86 | 2xV100 32GB |
## Pipeline description
This ASR system is composed of 3 different but linked blocks:
1. Tokenizer (unigram) that transforms words into subword units and trained with
the train transcriptions of LibriSpeech.
2. Neural language model (Transformer LM) trained on the full 10M words dataset.
3. Acoustic model made of a transformer encoder and a joint decoder with CTC +
transformer. Hence, the decoding also incorporates the CTC probabilities.
## Intended uses & limitations
This model has been primarily developed to be run within SpeechBrain as a pretrained ASR model
for the English language. Thanks to the flexibility of SpeechBrain, any of the 3 blocks
detailed above can be extracted and connected to your custom pipeline as long as SpeechBrain is
installed.
## Install SpeechBrain
First of all, please install SpeechBrain with the following command:
```
pip install speechbrain
```
Please notice that we encourage you to read our tutorials and learn more about
[SpeechBrain](https://speechbrain.github.io).
### Transcribing your own audio files (in English)
```python
from speechbrain.pretrained import TransformerASR
asr_model = TransformerASR.from_hparams(source="speechbrain/asr-transformer-transformerlm-librispeech", savedir="pretrained_models/asr-transformer-transformerlm-librispeech")
asr_model.transcribe_file("speechbrain/asr-transformer-transformerlm-librispeech/example.wav")
```
#### Referencing SpeechBrain
```
@misc{SB2021,
author = {Ravanelli, Mirco and Parcollet, Titouan and Rouhe, Aku and Plantinga, Peter and Rastorgueva, Elena and Lugosch, Loren and Dawalatabad, Nauman and Ju-Chieh, Chou and Heba, Abdel and Grondin, Francois and Aris, William and Liao, Chien-Feng and Cornell, Samuele and Yeh, Sung-Lin and Na, Hwidong and Gao, Yan and Fu, Szu-Wei and Subakan, Cem and De Mori, Renato and Bengio, Yoshua },
title = {SpeechBrain},
year = {2021},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\\\\url{https://github.com/speechbrain/speechbrain}},
}
```
|