|
|
|
|
|
import gradio as gr
|
|
|
|
from settings import (
|
|
DEFAULT_IMAGE_RESOLUTION,
|
|
DEFAULT_NUM_IMAGES,
|
|
MAX_IMAGE_RESOLUTION,
|
|
MAX_NUM_IMAGES,
|
|
MAX_SEED,
|
|
)
|
|
from utils import randomize_seed_fn
|
|
|
|
|
|
def create_demo(process):
|
|
with gr.Blocks() as demo:
|
|
with gr.Row():
|
|
with gr.Column():
|
|
image = gr.Image()
|
|
prompt = gr.Textbox(label="Prompt")
|
|
run_button = gr.Button("Run")
|
|
with gr.Accordion("Advanced options", open=False):
|
|
preprocessor_name = gr.Radio(
|
|
label="Preprocessor",
|
|
choices=["Midas", "DPT", "None"],
|
|
type="value",
|
|
value="DPT",
|
|
)
|
|
num_samples = gr.Slider(
|
|
label="Number of images",
|
|
minimum=1,
|
|
maximum=MAX_NUM_IMAGES,
|
|
value=DEFAULT_NUM_IMAGES,
|
|
step=1,
|
|
)
|
|
image_resolution = gr.Slider(
|
|
label="Image resolution",
|
|
minimum=256,
|
|
maximum=MAX_IMAGE_RESOLUTION,
|
|
value=DEFAULT_IMAGE_RESOLUTION,
|
|
step=256,
|
|
)
|
|
preprocess_resolution = gr.Slider(
|
|
label="Preprocess resolution",
|
|
minimum=128,
|
|
maximum=512,
|
|
value=384,
|
|
step=1,
|
|
)
|
|
num_steps = gr.Slider(
|
|
label="Number of steps",
|
|
minimum=1,
|
|
maximum=100,
|
|
value=20,
|
|
step=1,
|
|
)
|
|
guidance_scale = gr.Slider(
|
|
label="Guidance scale",
|
|
minimum=0.1,
|
|
maximum=30.0,
|
|
value=7.5,
|
|
step=0.1,
|
|
)
|
|
seed = gr.Slider(
|
|
label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0
|
|
)
|
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
|
a_prompt = gr.Textbox(
|
|
label="Additional prompt",
|
|
value="high-quality, extremely detailed, 4K",
|
|
)
|
|
n_prompt = gr.Textbox(
|
|
label="Negative prompt",
|
|
value="longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
|
|
)
|
|
with gr.Column():
|
|
result = gr.Gallery(
|
|
label="Output", show_label=False, columns=2, object_fit="scale-down"
|
|
)
|
|
|
|
inputs = [
|
|
image,
|
|
prompt,
|
|
a_prompt,
|
|
n_prompt,
|
|
num_samples,
|
|
image_resolution,
|
|
preprocess_resolution,
|
|
num_steps,
|
|
guidance_scale,
|
|
seed,
|
|
preprocessor_name,
|
|
]
|
|
prompt.submit(
|
|
fn=randomize_seed_fn,
|
|
inputs=[seed, randomize_seed],
|
|
outputs=seed,
|
|
queue=False,
|
|
api_name=False,
|
|
).then(
|
|
fn=process,
|
|
inputs=inputs,
|
|
outputs=result,
|
|
api_name=False,
|
|
)
|
|
run_button.click(
|
|
fn=randomize_seed_fn,
|
|
inputs=[seed, randomize_seed],
|
|
outputs=seed,
|
|
queue=False,
|
|
api_name=False,
|
|
).then(
|
|
fn=process,
|
|
inputs=inputs,
|
|
outputs=result,
|
|
api_name="depth",
|
|
)
|
|
return demo
|
|
|
|
|
|
if __name__ == "__main__":
|
|
from model import Model
|
|
|
|
model = Model(task_name="depth")
|
|
demo = create_demo(model.process_depth)
|
|
demo.queue().launch()
|
|
|