Spaces:
Runtime error
Runtime error
model_name = "InternLM" | |
cmd_to_install = "`pip install -r request_llms/requirements_chatglm.txt`" | |
from transformers import AutoModel, AutoTokenizer | |
import time | |
import threading | |
import importlib | |
from toolbox import update_ui, get_conf, ProxyNetworkActivate | |
from multiprocessing import Process, Pipe | |
from .local_llm_class import LocalLLMHandle, get_local_llm_predict_fns | |
# ------------------------------------------------------------------------------------------------------------------------ | |
# ππ» Local Model Utils | |
# ------------------------------------------------------------------------------------------------------------------------ | |
def try_to_import_special_deps(): | |
import sentencepiece | |
def combine_history(prompt, hist): | |
user_prompt = "<|User|>:{user}<eoh>\n" | |
robot_prompt = "<|Bot|>:{robot}<eoa>\n" | |
cur_query_prompt = "<|User|>:{user}<eoh>\n<|Bot|>:" | |
messages = hist | |
total_prompt = "" | |
for message in messages: | |
cur_content = message | |
cur_prompt = user_prompt.replace("{user}", cur_content[0]) | |
total_prompt += cur_prompt | |
cur_prompt = robot_prompt.replace("{robot}", cur_content[1]) | |
total_prompt += cur_prompt | |
total_prompt = total_prompt + cur_query_prompt.replace("{user}", prompt) | |
return total_prompt | |
# ------------------------------------------------------------------------------------------------------------------------ | |
# ππ» Local Model | |
# ------------------------------------------------------------------------------------------------------------------------ | |
class GetInternlmHandle(LocalLLMHandle): | |
def load_model_info(self): | |
# πββοΈπββοΈπββοΈ εθΏη¨ζ§θ‘ | |
self.model_name = model_name | |
self.cmd_to_install = cmd_to_install | |
def try_to_import_special_deps(self, **kwargs): | |
""" | |
import something that will raise error if the user does not install requirement_*.txt | |
""" | |
import sentencepiece | |
def load_model_and_tokenizer(self): | |
# πββοΈπββοΈπββοΈ εθΏη¨ζ§θ‘ | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
device = get_conf('LOCAL_MODEL_DEVICE') | |
with ProxyNetworkActivate('Download_LLM'): | |
if self._model is None: | |
tokenizer = AutoTokenizer.from_pretrained("internlm/internlm-chat-7b", trust_remote_code=True) | |
if device=='cpu': | |
model = AutoModelForCausalLM.from_pretrained("internlm/internlm-chat-7b", trust_remote_code=True).to(torch.bfloat16) | |
else: | |
model = AutoModelForCausalLM.from_pretrained("internlm/internlm-chat-7b", trust_remote_code=True).to(torch.bfloat16).cuda() | |
model = model.eval() | |
return model, tokenizer | |
def llm_stream_generator(self, **kwargs): | |
import torch | |
import logging | |
import copy | |
import warnings | |
import torch.nn as nn | |
from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList, GenerationConfig | |
# πββοΈπββοΈπββοΈ εθΏη¨ζ§θ‘ | |
def adaptor(): | |
model = self._model | |
tokenizer = self._tokenizer | |
prompt = kwargs['query'] | |
max_length = kwargs['max_length'] | |
top_p = kwargs['top_p'] | |
temperature = kwargs['temperature'] | |
history = kwargs['history'] | |
real_prompt = combine_history(prompt, history) | |
return model, tokenizer, real_prompt, max_length, top_p, temperature | |
model, tokenizer, prompt, max_length, top_p, temperature = adaptor() | |
prefix_allowed_tokens_fn = None | |
logits_processor = None | |
stopping_criteria = None | |
additional_eos_token_id = 103028 | |
generation_config = None | |
# πββοΈπββοΈπββοΈ εθΏη¨ζ§θ‘ | |
# πββοΈπββοΈπββοΈ https://github.com/InternLM/InternLM/blob/efbf5335709a8c8faeac6eaf07193973ff1d56a1/web_demo.py#L25 | |
inputs = tokenizer([prompt], padding=True, return_tensors="pt") | |
input_length = len(inputs["input_ids"][0]) | |
device = get_conf('LOCAL_MODEL_DEVICE') | |
for k, v in inputs.items(): | |
inputs[k] = v.to(device) | |
input_ids = inputs["input_ids"] | |
batch_size, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1] | |
if generation_config is None: | |
generation_config = model.generation_config | |
generation_config = copy.deepcopy(generation_config) | |
model_kwargs = generation_config.update(**kwargs) | |
bos_token_id, eos_token_id = generation_config.bos_token_id, generation_config.eos_token_id | |
if isinstance(eos_token_id, int): | |
eos_token_id = [eos_token_id] | |
if additional_eos_token_id is not None: | |
eos_token_id.append(additional_eos_token_id) | |
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None | |
if has_default_max_length and generation_config.max_new_tokens is None: | |
warnings.warn( | |
f"Using `max_length`'s default ({generation_config.max_length}) to control the generation length. " | |
"This behaviour is deprecated and will be removed from the config in v5 of Transformers -- we" | |
" recommend using `max_new_tokens` to control the maximum length of the generation.", | |
UserWarning, | |
) | |
elif generation_config.max_new_tokens is not None: | |
generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length | |
if not has_default_max_length: | |
logging.warn( | |
f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(=" | |
f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. " | |
"Please refer to the documentation for more information. " | |
"(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)", | |
UserWarning, | |
) | |
if input_ids_seq_length >= generation_config.max_length: | |
input_ids_string = "input_ids" | |
logging.warning( | |
f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to" | |
f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider" | |
" increasing `max_new_tokens`." | |
) | |
# 2. Set generation parameters if not already defined | |
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList() | |
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList() | |
logits_processor = model._get_logits_processor( | |
generation_config=generation_config, | |
input_ids_seq_length=input_ids_seq_length, | |
encoder_input_ids=input_ids, | |
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn, | |
logits_processor=logits_processor, | |
) | |
stopping_criteria = model._get_stopping_criteria( | |
generation_config=generation_config, stopping_criteria=stopping_criteria | |
) | |
logits_warper = model._get_logits_warper(generation_config) | |
unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1) | |
scores = None | |
while True: | |
model_inputs = model.prepare_inputs_for_generation(input_ids, **model_kwargs) | |
# forward pass to get next token | |
outputs = model( | |
**model_inputs, | |
return_dict=True, | |
output_attentions=False, | |
output_hidden_states=False, | |
) | |
next_token_logits = outputs.logits[:, -1, :] | |
# pre-process distribution | |
next_token_scores = logits_processor(input_ids, next_token_logits) | |
next_token_scores = logits_warper(input_ids, next_token_scores) | |
# sample | |
probs = nn.functional.softmax(next_token_scores, dim=-1) | |
if generation_config.do_sample: | |
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1) | |
else: | |
next_tokens = torch.argmax(probs, dim=-1) | |
# update generated ids, model inputs, and length for next step | |
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1) | |
model_kwargs = model._update_model_kwargs_for_generation( | |
outputs, model_kwargs, is_encoder_decoder=False | |
) | |
unfinished_sequences = unfinished_sequences.mul((min(next_tokens != i for i in eos_token_id)).long()) | |
output_token_ids = input_ids[0].cpu().tolist() | |
output_token_ids = output_token_ids[input_length:] | |
for each_eos_token_id in eos_token_id: | |
if output_token_ids[-1] == each_eos_token_id: | |
output_token_ids = output_token_ids[:-1] | |
response = tokenizer.decode(output_token_ids) | |
yield response | |
# stop when each sentence is finished, or if we exceed the maximum length | |
if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores): | |
return | |
# ------------------------------------------------------------------------------------------------------------------------ | |
# ππ» GPT-Academic Interface | |
# ------------------------------------------------------------------------------------------------------------------------ | |
predict_no_ui_long_connection, predict = get_local_llm_predict_fns(GetInternlmHandle, model_name) |