""" Events Utils Modified from Detectron2 Author: Xiaoyang Wu (xiaoyang.wu.cs@gmail.com) Please cite our work if the code is helpful to you. """ import datetime import json import logging import os import time import torch import numpy as np import traceback import sys from typing import List, Optional, Tuple from collections import defaultdict from contextlib import contextmanager __all__ = [ "get_event_storage", "JSONWriter", "TensorboardXWriter", "CommonMetricPrinter", "EventStorage", "ExceptionWriter", ] _CURRENT_STORAGE_STACK = [] def get_event_storage(): """ Returns: The :class:`EventStorage` object that's currently being used. Throws an error if no :class:`EventStorage` is currently enabled. """ assert len( _CURRENT_STORAGE_STACK ), "get_event_storage() has to be called inside a 'with EventStorage(...)' context!" return _CURRENT_STORAGE_STACK[-1] class EventWriter: """ Base class for writers that obtain events from :class:`EventStorage` and process them. """ def write(self): raise NotImplementedError def close(self): pass class JSONWriter(EventWriter): """ Write scalars to a json file. It saves scalars as one json per line (instead of a big json) for easy parsing. Examples parsing such a json file: :: $ cat metrics.json | jq -s '.[0:2]' [ { "data_time": 0.008433341979980469, "iteration": 19, "loss": 1.9228371381759644, "loss_box_reg": 0.050025828182697296, "loss_classifier": 0.5316952466964722, "loss_mask": 0.7236229181289673, "loss_rpn_box": 0.0856662318110466, "loss_rpn_cls": 0.48198649287223816, "lr": 0.007173333333333333, "time": 0.25401854515075684 }, { "data_time": 0.007216215133666992, "iteration": 39, "loss": 1.282649278640747, "loss_box_reg": 0.06222952902317047, "loss_classifier": 0.30682939291000366, "loss_mask": 0.6970193982124329, "loss_rpn_box": 0.038663312792778015, "loss_rpn_cls": 0.1471673548221588, "lr": 0.007706666666666667, "time": 0.2490077018737793 } ] $ cat metrics.json | jq '.loss_mask' 0.7126231789588928 0.689423680305481 0.6776131987571716 ... """ def __init__(self, json_file, window_size=20): """ Args: json_file (str): path to the json file. New data will be appended if the file exists. window_size (int): the window size of median smoothing for the scalars whose `smoothing_hint` are True. """ self._file_handle = open(json_file, "a") self._window_size = window_size self._last_write = -1 def write(self): storage = get_event_storage() to_save = defaultdict(dict) for k, (v, iter) in storage.latest_with_smoothing_hint( self._window_size ).items(): # keep scalars that have not been written if iter <= self._last_write: continue to_save[iter][k] = v if len(to_save): all_iters = sorted(to_save.keys()) self._last_write = max(all_iters) for itr, scalars_per_iter in to_save.items(): scalars_per_iter["iteration"] = itr self._file_handle.write(json.dumps(scalars_per_iter, sort_keys=True) + "\n") self._file_handle.flush() try: os.fsync(self._file_handle.fileno()) except AttributeError: pass def close(self): self._file_handle.close() class TensorboardXWriter(EventWriter): """ Write all scalars to a tensorboard file. """ def __init__(self, log_dir: str, window_size: int = 20, **kwargs): """ Args: log_dir (str): the directory to save the output events window_size (int): the scalars will be median-smoothed by this window size kwargs: other arguments passed to `torch.utils.tensorboard.SummaryWriter(...)` """ self._window_size = window_size from torch.utils.tensorboard import SummaryWriter self._writer = SummaryWriter(log_dir, **kwargs) self._last_write = -1 def write(self): storage = get_event_storage() new_last_write = self._last_write for k, (v, iter) in storage.latest_with_smoothing_hint( self._window_size ).items(): if iter > self._last_write: self._writer.add_scalar(k, v, iter) new_last_write = max(new_last_write, iter) self._last_write = new_last_write # storage.put_{image,histogram} is only meant to be used by # tensorboard writer. So we access its internal fields directly from here. if len(storage._vis_data) >= 1: for img_name, img, step_num in storage._vis_data: self._writer.add_image(img_name, img, step_num) # Storage stores all image data and rely on this writer to clear them. # As a result it assumes only one writer will use its image data. # An alternative design is to let storage store limited recent # data (e.g. only the most recent image) that all writers can access. # In that case a writer may not see all image data if its period is long. storage.clear_images() if len(storage._histograms) >= 1: for params in storage._histograms: self._writer.add_histogram_raw(**params) storage.clear_histograms() def close(self): if hasattr(self, "_writer"): # doesn't exist when the code fails at import self._writer.close() class CommonMetricPrinter(EventWriter): """ Print **common** metrics to the terminal, including iteration time, ETA, memory, all losses, and the learning rate. It also applies smoothing using a window of 20 elements. It's meant to print common metrics in common ways. To print something in more customized ways, please implement a similar printer by yourself. """ def __init__(self, max_iter: Optional[int] = None, window_size: int = 20): """ Args: max_iter: the maximum number of iterations to train. Used to compute ETA. If not given, ETA will not be printed. window_size (int): the losses will be median-smoothed by this window size """ self.logger = logging.getLogger(__name__) self._max_iter = max_iter self._window_size = window_size self._last_write = ( None # (step, time) of last call to write(). Used to compute ETA ) def _get_eta(self, storage) -> Optional[str]: if self._max_iter is None: return "" iteration = storage.iter try: eta_seconds = storage.history("time").median(1000) * ( self._max_iter - iteration - 1 ) storage.put_scalar("eta_seconds", eta_seconds, smoothing_hint=False) return str(datetime.timedelta(seconds=int(eta_seconds))) except KeyError: # estimate eta on our own - more noisy eta_string = None if self._last_write is not None: estimate_iter_time = (time.perf_counter() - self._last_write[1]) / ( iteration - self._last_write[0] ) eta_seconds = estimate_iter_time * (self._max_iter - iteration - 1) eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) self._last_write = (iteration, time.perf_counter()) return eta_string def write(self): storage = get_event_storage() iteration = storage.iter if iteration == self._max_iter: # This hook only reports training progress (loss, ETA, etc) but not other data, # therefore do not write anything after training succeeds, even if this method # is called. return try: data_time = storage.history("data_time").avg(20) except KeyError: # they may not exist in the first few iterations (due to warmup) # or when SimpleTrainer is not used data_time = None try: iter_time = storage.history("time").global_avg() except KeyError: iter_time = None try: lr = "{:.5g}".format(storage.history("lr").latest()) except KeyError: lr = "N/A" eta_string = self._get_eta(storage) if torch.cuda.is_available(): max_mem_mb = torch.cuda.max_memory_allocated() / 1024.0 / 1024.0 else: max_mem_mb = None # NOTE: max_mem is parsed by grep in "dev/parse_results.sh" self.logger.info( " {eta}iter: {iter} {losses} {time}{data_time}lr: {lr} {memory}".format( eta=f"eta: {eta_string} " if eta_string else "", iter=iteration, losses=" ".join( [ "{}: {:.4g}".format(k, v.median(self._window_size)) for k, v in storage.histories().items() if "loss" in k ] ), time=( "time: {:.4f} ".format(iter_time) if iter_time is not None else "" ), data_time=( "data_time: {:.4f} ".format(data_time) if data_time is not None else "" ), lr=lr, memory=( "max_mem: {:.0f}M".format(max_mem_mb) if max_mem_mb is not None else "" ), ) ) class EventStorage: """ The user-facing class that provides metric storage functionalities. In the future we may add support for storing / logging other types of data if needed. """ def __init__(self, start_iter=0): """ Args: start_iter (int): the iteration number to start with """ self._history = defaultdict(AverageMeter) self._smoothing_hints = {} self._latest_scalars = {} self._iter = start_iter self._current_prefix = "" self._vis_data = [] self._histograms = [] # def put_image(self, img_name, img_tensor): # """ # Add an `img_tensor` associated with `img_name`, to be shown on # tensorboard. # Args: # img_name (str): The name of the image to put into tensorboard. # img_tensor (torch.Tensor or numpy.array): An `uint8` or `float` # Tensor of shape `[channel, height, width]` where `channel` is # 3. The image format should be RGB. The elements in img_tensor # can either have values in [0, 1] (float32) or [0, 255] (uint8). # The `img_tensor` will be visualized in tensorboard. # """ # self._vis_data.append((img_name, img_tensor, self._iter)) def put_scalar(self, name, value, n=1, smoothing_hint=False): """ Add a scalar `value` to the `HistoryBuffer` associated with `name`. Args: smoothing_hint (bool): a 'hint' on whether this scalar is noisy and should be smoothed when logged. The hint will be accessible through :meth:`EventStorage.smoothing_hints`. A writer may ignore the hint and apply custom smoothing rule. It defaults to True because most scalars we save need to be smoothed to provide any useful signal. """ name = self._current_prefix + name history = self._history[name] history.update(value, n) self._latest_scalars[name] = (value, self._iter) existing_hint = self._smoothing_hints.get(name) if existing_hint is not None: assert ( existing_hint == smoothing_hint ), "Scalar {} was put with a different smoothing_hint!".format(name) else: self._smoothing_hints[name] = smoothing_hint # def put_scalars(self, *, smoothing_hint=True, **kwargs): # """ # Put multiple scalars from keyword arguments. # Examples: # storage.put_scalars(loss=my_loss, accuracy=my_accuracy, smoothing_hint=True) # """ # for k, v in kwargs.items(): # self.put_scalar(k, v, smoothing_hint=smoothing_hint) # # def put_histogram(self, hist_name, hist_tensor, bins=1000): # """ # Create a histogram from a tensor. # Args: # hist_name (str): The name of the histogram to put into tensorboard. # hist_tensor (torch.Tensor): A Tensor of arbitrary shape to be converted # into a histogram. # bins (int): Number of histogram bins. # """ # ht_min, ht_max = hist_tensor.min().item(), hist_tensor.max().item() # # # Create a histogram with PyTorch # hist_counts = torch.histc(hist_tensor, bins=bins) # hist_edges = torch.linspace(start=ht_min, end=ht_max, steps=bins + 1, dtype=torch.float32) # # # Parameter for the add_histogram_raw function of SummaryWriter # hist_params = dict( # tag=hist_name, # min=ht_min, # max=ht_max, # num=len(hist_tensor), # sum=float(hist_tensor.sum()), # sum_squares=float(torch.sum(hist_tensor**2)), # bucket_limits=hist_edges[1:].tolist(), # bucket_counts=hist_counts.tolist(), # global_step=self._iter, # ) # self._histograms.append(hist_params) def history(self, name): """ Returns: AverageMeter: the history for name """ ret = self._history.get(name, None) if ret is None: raise KeyError("No history metric available for {}!".format(name)) return ret def histories(self): """ Returns: dict[name -> HistoryBuffer]: the HistoryBuffer for all scalars """ return self._history def latest(self): """ Returns: dict[str -> (float, int)]: mapping from the name of each scalar to the most recent value and the iteration number its added. """ return self._latest_scalars def latest_with_smoothing_hint(self, window_size=20): """ Similar to :meth:`latest`, but the returned values are either the un-smoothed original latest value, or a median of the given window_size, depend on whether the smoothing_hint is True. This provides a default behavior that other writers can use. """ result = {} for k, (v, itr) in self._latest_scalars.items(): result[k] = ( self._history[k].median(window_size) if self._smoothing_hints[k] else v, itr, ) return result def smoothing_hints(self): """ Returns: dict[name -> bool]: the user-provided hint on whether the scalar is noisy and needs smoothing. """ return self._smoothing_hints def step(self): """ User should either: (1) Call this function to increment storage.iter when needed. Or (2) Set `storage.iter` to the correct iteration number before each iteration. The storage will then be able to associate the new data with an iteration number. """ self._iter += 1 @property def iter(self): """ Returns: int: The current iteration number. When used together with a trainer, this is ensured to be the same as trainer.iter. """ return self._iter @iter.setter def iter(self, val): self._iter = int(val) @property def iteration(self): # for backward compatibility return self._iter def __enter__(self): _CURRENT_STORAGE_STACK.append(self) return self def __exit__(self, exc_type, exc_val, exc_tb): assert _CURRENT_STORAGE_STACK[-1] == self _CURRENT_STORAGE_STACK.pop() @contextmanager def name_scope(self, name): """ Yields: A context within which all the events added to this storage will be prefixed by the name scope. """ old_prefix = self._current_prefix self._current_prefix = name.rstrip("/") + "/" yield self._current_prefix = old_prefix def clear_images(self): """ Delete all the stored images for visualization. This should be called after images are written to tensorboard. """ self._vis_data = [] def clear_histograms(self): """ Delete all the stored histograms for visualization. This should be called after histograms are written to tensorboard. """ self._histograms = [] def reset_history(self, name): ret = self._history.get(name, None) if ret is None: raise KeyError("No history metric available for {}!".format(name)) ret.reset() def reset_histories(self): for name in self._history.keys(): self._history[name].reset() class AverageMeter: """Computes and stores the average and current value""" def __init__(self): self.val = 0 self.avg = 0 self.total = 0 self.count = 0 def reset(self): self.val = 0 self.avg = 0 self.total = 0 self.count = 0 def update(self, val, n=1): self.val = val self.total += val * n self.count += n self.avg = self.total / self.count class HistoryBuffer: """ Track a series of scalar values and provide access to smoothed values over a window or the global average of the series. """ def __init__(self, max_length: int = 1000000) -> None: """ Args: max_length: maximal number of values that can be stored in the buffer. When the capacity of the buffer is exhausted, old values will be removed. """ self._max_length: int = max_length self._data: List[Tuple[float, float]] = [] # (value, iteration) pairs self._count: int = 0 self._global_avg: float = 0 def update(self, value: float, iteration: Optional[float] = None) -> None: """ Add a new scalar value produced at certain iteration. If the length of the buffer exceeds self._max_length, the oldest element will be removed from the buffer. """ if iteration is None: iteration = self._count if len(self._data) == self._max_length: self._data.pop(0) self._data.append((value, iteration)) self._count += 1 self._global_avg += (value - self._global_avg) / self._count def latest(self) -> float: """ Return the latest scalar value added to the buffer. """ return self._data[-1][0] def median(self, window_size: int) -> float: """ Return the median of the latest `window_size` values in the buffer. """ return np.median([x[0] for x in self._data[-window_size:]]) def avg(self, window_size: int) -> float: """ Return the mean of the latest `window_size` values in the buffer. """ return np.mean([x[0] for x in self._data[-window_size:]]) def global_avg(self) -> float: """ Return the mean of all the elements in the buffer. Note that this includes those getting removed due to limited buffer storage. """ return self._global_avg def values(self) -> List[Tuple[float, float]]: """ Returns: list[(number, iteration)]: content of the current buffer. """ return self._data class ExceptionWriter: def __init__(self): self.logger = logging.getLogger(__name__) def __enter__(self): pass def __exit__(self, exc_type, exc_val, exc_tb): if exc_type: tb = traceback.format_exception(exc_type, exc_val, exc_tb) formatted_tb_str = "".join(tb) self.logger.error(formatted_tb_str) sys.exit(1) # This prevents double logging the error to the console