_base_ = ["../_base_/default_runtime.py"] # misc custom setting batch_size = 12 # bs: total bs in all gpus num_worker = 12 mix_prob = 0 empty_cache = False enable_amp = True evaluate = True class_names = [ "wall", "floor", "cabinet", "bed", "chair", "sofa", "table", "door", "window", "bookshelf", "picture", "counter", "desk", "curtain", "refridgerator", "shower curtain", "toilet", "sink", "bathtub", "otherfurniture", ] num_classes = 20 segment_ignore_index = (-1, 0, 1) # model settings model = dict( type="PG-v1m1", backbone=dict( type="SpUNet-v1m1", in_channels=6, num_classes=0, channels=(32, 64, 128, 256, 256, 128, 96, 96), layers=(2, 3, 4, 6, 2, 2, 2, 2), ), backbone_out_channels=96, semantic_num_classes=num_classes, semantic_ignore_index=-1, segment_ignore_index=segment_ignore_index, instance_ignore_index=-1, cluster_thresh=1.5, cluster_closed_points=300, cluster_propose_points=100, cluster_min_points=50, ) # scheduler settings epoch = 800 optimizer = dict(type="SGD", lr=0.1, momentum=0.9, weight_decay=0.0001, nesterov=True) scheduler = dict(type="PolyLR") # dataset settings dataset_type = "ScanNetDataset" data_root = "data/scannet" data = dict( num_classes=num_classes, ignore_index=-1, names=class_names, train=dict( type=dataset_type, split="train", data_root=data_root, transform=[ dict(type="CenterShift", apply_z=True), dict( type="RandomDropout", dropout_ratio=0.2, dropout_application_ratio=0.5 ), # dict(type="RandomRotateTargetAngle", angle=(1/2, 1, 3/2), center=[0, 0, 0], axis='z', p=0.75), dict(type="RandomRotate", angle=[-1, 1], axis="z", center=[0, 0, 0], p=0.5), dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="x", p=0.5), dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="y", p=0.5), dict(type="RandomScale", scale=[0.9, 1.1]), # dict(type="RandomShift", shift=[0.2, 0.2, 0.2]), dict(type="RandomFlip", p=0.5), dict(type="RandomJitter", sigma=0.005, clip=0.02), dict(type="ElasticDistortion", distortion_params=[[0.2, 0.4], [0.8, 1.6]]), dict(type="ChromaticAutoContrast", p=0.2, blend_factor=None), dict(type="ChromaticTranslation", p=0.95, ratio=0.1), dict(type="ChromaticJitter", p=0.95, std=0.05), # dict(type="HueSaturationTranslation", hue_max=0.2, saturation_max=0.2), # dict(type="RandomColorDrop", p=0.2, color_augment=0.0), dict( type="GridSample", grid_size=0.02, hash_type="fnv", mode="train", return_grid_coord=True, keys=("coord", "color", "normal", "segment", "instance"), ), dict(type="SphereCrop", sample_rate=0.8, mode="random"), dict(type="NormalizeColor"), dict( type="InstanceParser", segment_ignore_index=segment_ignore_index, instance_ignore_index=-1, ), dict(type="ToTensor"), dict( type="Collect", keys=( "coord", "grid_coord", "segment", "instance", "instance_centroid", "bbox", ), feat_keys=("color", "normal"), ), ], test_mode=False, ), val=dict( type=dataset_type, split="val", data_root=data_root, transform=[ dict(type="CenterShift", apply_z=True), dict( type="Copy", keys_dict={ "coord": "origin_coord", "segment": "origin_segment", "instance": "origin_instance", }, ), dict( type="GridSample", grid_size=0.02, hash_type="fnv", mode="train", return_grid_coord=True, keys=("coord", "color", "normal", "segment", "instance"), ), # dict(type="SphereCrop", point_max=1000000, mode='center'), dict(type="CenterShift", apply_z=False), dict(type="NormalizeColor"), dict( type="InstanceParser", segment_ignore_index=segment_ignore_index, instance_ignore_index=-1, ), dict(type="ToTensor"), dict( type="Collect", keys=( "coord", "grid_coord", "segment", "instance", "origin_coord", "origin_segment", "origin_instance", "instance_centroid", "bbox", ), feat_keys=("color", "normal"), offset_keys_dict=dict(offset="coord", origin_offset="origin_coord"), ), ], test_mode=False, ), test=dict(), # currently not available ) hooks = [ dict(type="CheckpointLoader", keywords="module.", replacement="module."), dict(type="IterationTimer", warmup_iter=2), dict(type="InformationWriter"), dict( type="InsSegEvaluator", segment_ignore_index=segment_ignore_index, instance_ignore_index=-1, ), dict(type="CheckpointSaver", save_freq=None), ]