_base_ = ["../_base_/default_runtime.py"] # misc custom setting batch_size = 12 # bs: total bs in all gpus mix_prob = 0.8 empty_cache = False enable_amp = True # model settings model = dict( type="DefaultSegmentor", backbone=dict( type="PT-v2m2", in_channels=4, num_classes=16, patch_embed_depth=1, patch_embed_channels=48, patch_embed_groups=6, patch_embed_neighbours=8, enc_depths=(2, 2, 6, 2), enc_channels=(96, 192, 384, 512), enc_groups=(12, 24, 48, 64), enc_neighbours=(16, 16, 16, 16), dec_depths=(1, 1, 1, 1), dec_channels=(48, 96, 192, 384), dec_groups=(6, 12, 24, 48), dec_neighbours=(16, 16, 16, 16), grid_sizes=(0.15, 0.375, 0.9375, 2.34375), # x3, x2.5, x2.5, x2.5 attn_qkv_bias=True, pe_multiplier=False, pe_bias=True, attn_drop_rate=0.0, drop_path_rate=0.3, enable_checkpoint=False, unpool_backend="map", # map / interp ), criteria=[ dict(type="CrossEntropyLoss", loss_weight=1.0, ignore_index=-1), dict(type="LovaszLoss", mode="multiclass", loss_weight=1.0, ignore_index=-1), ], ) # scheduler settings epoch = 50 eval_epoch = 50 optimizer = dict(type="AdamW", lr=0.002, weight_decay=0.005) scheduler = dict( type="OneCycleLR", max_lr=optimizer["lr"], pct_start=0.04, anneal_strategy="cos", div_factor=10.0, final_div_factor=100.0, ) # dataset settings dataset_type = "NuScenesDataset" data_root = "data/nuscenes" ignore_index = -1 names = [ "barrier", "bicycle", "bus", "car", "construction_vehicle", "motorcycle", "pedestrian", "traffic_cone", "trailer", "truck", "driveable_surface", "other_flat", "sidewalk", "terrain", "manmade", "vegetation", ] data = dict( num_classes=16, ignore_index=ignore_index, names=names, train=dict( type=dataset_type, split="train", data_root=data_root, transform=[ # dict(type="RandomDropout", dropout_ratio=0.2, dropout_application_ratio=0.2), # dict(type="RandomRotateTargetAngle", angle=(1/2, 1, 3/2), center=[0, 0, 0], axis='z', p=0.75), dict(type="RandomRotate", angle=[-1, 1], axis="z", center=[0, 0, 0], p=0.5), # dict(type="RandomRotate", angle=[-1/6, 1/6], axis='x', p=0.5), # dict(type="RandomRotate", angle=[-1/6, 1/6], axis='y', p=0.5), dict(type="RandomScale", scale=[0.9, 1.1]), # dict(type="RandomShift", shift=[0.2, 0.2, 0.2]), dict(type="RandomFlip", p=0.5), dict(type="RandomJitter", sigma=0.005, clip=0.02), # dict(type="ElasticDistortion", distortion_params=[[0.2, 0.4], [0.8, 1.6]]), # dict(type="GridSample", grid_size=0.05, hash_type="fnv", mode="train", # keys=("coord", "strength", "segment"), return_grid_coord=True), # dict(type="SphereCrop", point_max=1000000, mode="random"), # dict(type="CenterShift", apply_z=False), dict(type="ToTensor"), dict( type="Collect", keys=("coord", "segment"), feat_keys=("coord", "strength"), ), ], test_mode=False, ignore_index=ignore_index, ), val=dict( type=dataset_type, split="val", data_root=data_root, transform=[ # dict(type="PointClip", point_cloud_range=(-51.2, -51.2, -4, 51.2, 51.2, 2.4)), # dict(type="GridSample", grid_size=0.05, hash_type="fnv", mode="train", # keys=("coord", "strength", "segment"), return_grid_coord=True), dict(type="ToTensor"), dict( type="Collect", keys=("coord", "segment"), feat_keys=("coord", "strength"), ), ], test_mode=False, ignore_index=ignore_index, ), test=dict( type=dataset_type, split="val", data_root=data_root, transform=[], test_mode=True, test_cfg=dict( voxelize=None, crop=None, post_transform=[ dict(type="ToTensor"), dict( type="Collect", keys=("coord", "index"), feat_keys=("coord", "strength"), ), ], aug_transform=[ [dict(type="RandomScale", scale=[0.9, 0.9])], [dict(type="RandomScale", scale=[0.95, 0.95])], [dict(type="RandomScale", scale=[1, 1])], [dict(type="RandomScale", scale=[1.05, 1.05])], [dict(type="RandomScale", scale=[1.1, 1.1])], [ dict(type="RandomScale", scale=[0.9, 0.9]), dict(type="RandomFlip", p=1), ], [ dict(type="RandomScale", scale=[0.95, 0.95]), dict(type="RandomFlip", p=1), ], [dict(type="RandomScale", scale=[1, 1]), dict(type="RandomFlip", p=1)], [ dict(type="RandomScale", scale=[1.05, 1.05]), dict(type="RandomFlip", p=1), ], [ dict(type="RandomScale", scale=[1.1, 1.1]), dict(type="RandomFlip", p=1), ], ], ), ignore_index=ignore_index, ), )