_base_ = ["../_base_/default_runtime.py"] # misc custom setting batch_size = 12 # bs: total bs in all gpus num_worker = 24 mix_prob = 0.8 empty_cache = False enable_amp = True find_unused_parameters = True # trainer train = dict( type="MultiDatasetTrainer", ) # model settings model = dict( type="PPT-v1m2", backbone=dict( type="SpUNet-v1m3", in_channels=4, num_classes=0, base_channels=32, context_channels=256, channels=(32, 64, 128, 256, 256, 128, 96, 96), layers=(2, 3, 4, 6, 2, 2, 2, 2), cls_mode=False, conditions=("SemanticKITTI", "nuScenes", "Waymo"), zero_init=False, norm_decouple=True, norm_adaptive=False, norm_affine=True, ), criteria=[ dict(type="CrossEntropyLoss", loss_weight=1.0, ignore_index=-1), dict(type="LovaszLoss", mode="multiclass", loss_weight=1.0, ignore_index=-1), ], backbone_out_channels=96, context_channels=256, conditions=("SemanticKITTI", "nuScenes", "Waymo"), num_classes=(19, 16, 22), ) # scheduler settings epoch = 50 eval_epoch = 50 optimizer = dict(type="AdamW", lr=0.002, weight_decay=0.005) scheduler = dict( type="OneCycleLR", max_lr=optimizer["lr"], pct_start=0.04, anneal_strategy="cos", div_factor=10.0, final_div_factor=100.0, ) # param_dicts = [dict(keyword="modulation", lr=0.0002)] # dataset settings data = dict( num_classes=16, ignore_index=-1, names=[ "barrier", "bicycle", "bus", "car", "construction_vehicle", "motorcycle", "pedestrian", "traffic_cone", "trailer", "truck", "driveable_surface", "other_flat", "sidewalk", "terrain", "manmade", "vegetation", ], train=dict( type="ConcatDataset", datasets=[ # nuScenes dict( type="NuScenesDataset", split="train", data_root="data/nuscenes", transform=[ # dict(type="RandomDropout", dropout_ratio=0.2, dropout_application_ratio=0.2), # dict(type="RandomRotateTargetAngle", angle=(1/2, 1, 3/2), center=[0, 0, 0], axis='z', p=0.75), dict( type="RandomRotate", angle=[-1, 1], axis="z", center=[0, 0, 0], p=0.5, ), # dict(type="RandomRotate", angle=[-1/6, 1/6], axis='x', p=0.5), # dict(type="RandomRotate", angle=[-1/6, 1/6], axis='y', p=0.5), dict( type="PointClip", point_cloud_range=(-35.2, -35.2, -4, 35.2, 35.2, 2), ), dict(type="RandomScale", scale=[0.9, 1.1]), # dict(type="RandomShift", shift=[0.2, 0.2, 0.2]), dict(type="RandomFlip", p=0.5), dict(type="RandomJitter", sigma=0.005, clip=0.02), # dict(type="ElasticDistortion", distortion_params=[[0.2, 0.4], [0.8, 1.6]]), dict( type="GridSample", grid_size=0.05, hash_type="fnv", mode="train", keys=("coord", "strength", "segment"), return_grid_coord=True, ), # dict(type="SphereCrop", point_max=1000000, mode="random"), # dict(type="CenterShift", apply_z=False), dict(type="Add", keys_dict={"condition": "nuScenes"}), dict(type="ToTensor"), dict( type="Collect", keys=("coord", "grid_coord", "segment", "condition"), feat_keys=("coord", "strength"), ), ], test_mode=False, ignore_index=-1, loop=1, ), # SemanticKITTI dict( type="SemanticKITTIDataset", split="train", data_root="data/semantic_kitti", transform=[ # dict(type="RandomDropout", dropout_ratio=0.2, dropout_application_ratio=0.2), # dict(type="RandomRotateTargetAngle", angle=(1/2, 1, 3/2), center=[0, 0, 0], axis="z", p=0.75), dict( type="RandomRotate", angle=[-1, 1], axis="z", center=[0, 0, 0], p=0.5, ), # dict(type="RandomRotate", angle=[-1/6, 1/6], axis="x", p=0.5), # dict(type="RandomRotate", angle=[-1/6, 1/6], axis="y", p=0.5), dict( type="PointClip", point_cloud_range=(-75.2, -75.2, -4, 75.2, 75.2, 2), ), dict(type="RandomScale", scale=[0.9, 1.1]), # dict(type="RandomShift", shift=[0.2, 0.2, 0.2]), dict(type="RandomFlip", p=0.5), dict(type="RandomJitter", sigma=0.005, clip=0.02), # dict(type="ElasticDistortion", distortion_params=[[0.2, 0.4], [0.8, 1.6]]), dict( type="GridSample", grid_size=0.05, hash_type="fnv", mode="train", keys=("coord", "strength", "segment"), return_grid_coord=True, ), # dict(type="SphereCrop", point_max=1000000, mode="random"), # dict(type="CenterShift", apply_z=False), dict(type="Add", keys_dict={"condition": "SemanticKITTI"}), dict(type="ToTensor"), dict( type="Collect", keys=("coord", "grid_coord", "segment", "condition"), feat_keys=("coord", "strength"), ), ], test_mode=False, ignore_index=-1, loop=1, ), # Waymo dict( type="WaymoDataset", split="training", data_root="data/waymo", transform=[ # dict(type="RandomDropout", dropout_ratio=0.2, dropout_application_ratio=0.2), # dict(type="RandomRotateTargetAngle", angle=(1/2, 1, 3/2), center=[0, 0, 0], axis="z", p=0.75), dict( type="RandomRotate", angle=[-1, 1], axis="z", center=[0, 0, 0], p=0.5, ), # dict(type="RandomRotate", angle=[-1/6, 1/6], axis="x", p=0.5), # dict(type="RandomRotate", angle=[-1/6, 1/6], axis="y", p=0.5), dict( type="PointClip", point_cloud_range=(-35.2, -35.2, -4, 35.2, 35.2, 2), ), dict(type="RandomScale", scale=[0.9, 1.1]), # dict(type="RandomShift", shift=[0.2, 0.2, 0.2]), dict(type="RandomFlip", p=0.5), dict(type="RandomJitter", sigma=0.005, clip=0.02), # dict(type="ElasticDistortion", distortion_params=[[0.2, 0.4], [0.8, 1.6]]), dict( type="GridSample", grid_size=0.05, hash_type="fnv", mode="train", keys=("coord", "strength", "segment"), return_grid_coord=True, ), # dict(type="SphereCrop", point_max=1000000, mode="random"), # dict(type="CenterShift", apply_z=False), dict(type="Add", keys_dict={"condition": "Waymo"}), dict(type="ToTensor"), dict( type="Collect", keys=("coord", "grid_coord", "segment", "condition"), feat_keys=("coord", "strength"), ), ], test_mode=False, ignore_index=-1, loop=1, ), ], ), val=dict( type="NuScenesDataset", split="val", data_root="data/nuscenes", transform=[ dict(type="PointClip", point_cloud_range=(-35.2, -35.2, -4, 35.2, 35.2, 2)), dict( type="GridSample", grid_size=0.05, hash_type="fnv", mode="train", keys=("coord", "strength", "segment"), return_grid_coord=True, ), dict(type="Add", keys_dict={"condition": "nuScenes"}), dict(type="ToTensor"), dict( type="Collect", keys=("coord", "grid_coord", "segment", "condition"), feat_keys=("coord", "strength"), ), ], test_mode=False, ignore_index=-1, ), test=dict( type="NuScenesDataset", split="val", data_root="data/nuscenes", transform=[ dict(type="Copy", keys_dict={"segment": "origin_segment"}), dict( type="GridSample", grid_size=0.025, hash_type="fnv", mode="train", keys=("coord", "strength", "segment"), return_inverse=True, ), ], test_mode=True, test_cfg=dict( voxelize=dict( type="GridSample", grid_size=0.05, hash_type="fnv", mode="test", return_grid_coord=True, keys=("coord", "strength"), ), crop=None, post_transform=[ dict(type="Add", keys_dict={"condition": "nuScenes"}), dict(type="ToTensor"), dict( type="Collect", keys=("coord", "grid_coord", "index", "condition"), feat_keys=("coord", "strength"), ), ], aug_transform=[ [dict(type="RandomScale", scale=[0.9, 0.9])], [dict(type="RandomScale", scale=[0.95, 0.95])], [dict(type="RandomScale", scale=[1, 1])], [dict(type="RandomScale", scale=[1.05, 1.05])], [dict(type="RandomScale", scale=[1.1, 1.1])], [ dict(type="RandomScale", scale=[0.9, 0.9]), dict(type="RandomFlip", p=1), ], [ dict(type="RandomScale", scale=[0.95, 0.95]), dict(type="RandomFlip", p=1), ], [dict(type="RandomScale", scale=[1, 1]), dict(type="RandomFlip", p=1)], [ dict(type="RandomScale", scale=[1.05, 1.05]), dict(type="RandomFlip", p=1), ], [ dict(type="RandomScale", scale=[1.1, 1.1]), dict(type="RandomFlip", p=1), ], ], ), ignore_index=-1, ), )