ziqima's picture
initial commit
4893ce0
raw
history blame
7.93 kB
"""
Misc Losses
Author: Xiaoyang Wu ([email protected])
Please cite our work if the code is helpful to you.
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from .builder import LOSSES
@LOSSES.register_module()
class CrossEntropyLoss(nn.Module):
def __init__(
self,
weight=None,
size_average=None,
reduce=None,
reduction="mean",
label_smoothing=0.0,
loss_weight=1.0,
ignore_index=-1,
):
super(CrossEntropyLoss, self).__init__()
weight = torch.tensor(weight).cuda() if weight is not None else None
self.loss_weight = loss_weight
self.loss = nn.CrossEntropyLoss(
weight=weight,
size_average=size_average,
ignore_index=ignore_index,
reduce=reduce,
reduction=reduction,
label_smoothing=label_smoothing,
)
def forward(self, pred, target):
return self.loss(pred, target) * self.loss_weight
@LOSSES.register_module()
class SmoothCELoss(nn.Module):
def __init__(self, smoothing_ratio=0.1):
super(SmoothCELoss, self).__init__()
self.smoothing_ratio = smoothing_ratio
def forward(self, pred, target):
eps = self.smoothing_ratio
n_class = pred.size(1)
one_hot = torch.zeros_like(pred).scatter(1, target.view(-1, 1), 1)
one_hot = one_hot * (1 - eps) + (1 - one_hot) * eps / (n_class - 1)
log_prb = F.log_softmax(pred, dim=1)
loss = -(one_hot * log_prb).total(dim=1)
loss = loss[torch.isfinite(loss)].mean()
return loss
@LOSSES.register_module()
class BinaryFocalLoss(nn.Module):
def __init__(self, gamma=2.0, alpha=0.5, logits=True, reduce=True, loss_weight=1.0):
"""Binary Focal Loss
<https://arxiv.org/abs/1708.02002>`
"""
super(BinaryFocalLoss, self).__init__()
assert 0 < alpha < 1
self.gamma = gamma
self.alpha = alpha
self.logits = logits
self.reduce = reduce
self.loss_weight = loss_weight
def forward(self, pred, target, **kwargs):
"""Forward function.
Args:
pred (torch.Tensor): The prediction with shape (N)
target (torch.Tensor): The ground truth. If containing class
indices, shape (N) where each value is 0≤targets[i]≤1, If containing class probabilities,
same shape as the input.
Returns:
torch.Tensor: The calculated loss
"""
if self.logits:
bce = F.binary_cross_entropy_with_logits(pred, target, reduction="none")
else:
bce = F.binary_cross_entropy(pred, target, reduction="none")
pt = torch.exp(-bce)
alpha = self.alpha * target + (1 - self.alpha) * (1 - target)
focal_loss = alpha * (1 - pt) ** self.gamma * bce
if self.reduce:
focal_loss = torch.mean(focal_loss)
return focal_loss * self.loss_weight
@LOSSES.register_module()
class FocalLoss(nn.Module):
def __init__(
self, gamma=2.0, alpha=0.5, reduction="mean", loss_weight=1.0, ignore_index=-1
):
"""Focal Loss
<https://arxiv.org/abs/1708.02002>`
"""
super(FocalLoss, self).__init__()
assert reduction in (
"mean",
"sum",
), "AssertionError: reduction should be 'mean' or 'sum'"
assert isinstance(
alpha, (float, list)
), "AssertionError: alpha should be of type float"
assert isinstance(gamma, float), "AssertionError: gamma should be of type float"
assert isinstance(
loss_weight, float
), "AssertionError: loss_weight should be of type float"
assert isinstance(ignore_index, int), "ignore_index must be of type int"
self.gamma = gamma
self.alpha = alpha
self.reduction = reduction
self.loss_weight = loss_weight
self.ignore_index = ignore_index
def forward(self, pred, target, **kwargs):
"""Forward function.
Args:
pred (torch.Tensor): The prediction with shape (N, C) where C = number of classes.
target (torch.Tensor): The ground truth. If containing class
indices, shape (N) where each value is 0≤targets[i]≤C−1, If containing class probabilities,
same shape as the input.
Returns:
torch.Tensor: The calculated loss
"""
# [B, C, d_1, d_2, ..., d_k] -> [C, B, d_1, d_2, ..., d_k]
pred = pred.transpose(0, 1)
# [C, B, d_1, d_2, ..., d_k] -> [C, N]
pred = pred.reshape(pred.size(0), -1)
# [C, N] -> [N, C]
pred = pred.transpose(0, 1).contiguous()
# (B, d_1, d_2, ..., d_k) --> (B * d_1 * d_2 * ... * d_k,)
target = target.view(-1).contiguous()
assert pred.size(0) == target.size(
0
), "The shape of pred doesn't match the shape of target"
valid_mask = target != self.ignore_index
target = target[valid_mask]
pred = pred[valid_mask]
if len(target) == 0:
return 0.0
num_classes = pred.size(1)
target = F.one_hot(target, num_classes=num_classes)
alpha = self.alpha
if isinstance(alpha, list):
alpha = pred.new_tensor(alpha)
pred_sigmoid = pred.sigmoid()
target = target.type_as(pred)
one_minus_pt = (1 - pred_sigmoid) * target + pred_sigmoid * (1 - target)
focal_weight = (alpha * target + (1 - alpha) * (1 - target)) * one_minus_pt.pow(
self.gamma
)
loss = (
F.binary_cross_entropy_with_logits(pred, target, reduction="none")
* focal_weight
)
if self.reduction == "mean":
loss = loss.mean()
elif self.reduction == "sum":
loss = loss.total()
return self.loss_weight * loss
@LOSSES.register_module()
class DiceLoss(nn.Module):
def __init__(self, smooth=1, exponent=2, loss_weight=1.0, ignore_index=-1):
"""DiceLoss.
This loss is proposed in `V-Net: Fully Convolutional Neural Networks for
Volumetric Medical Image Segmentation <https://arxiv.org/abs/1606.04797>`_.
"""
super(DiceLoss, self).__init__()
self.smooth = smooth
self.exponent = exponent
self.loss_weight = loss_weight
self.ignore_index = ignore_index
def forward(self, pred, target, **kwargs):
# [B, C, d_1, d_2, ..., d_k] -> [C, B, d_1, d_2, ..., d_k]
pred = pred.transpose(0, 1)
# [C, B, d_1, d_2, ..., d_k] -> [C, N]
pred = pred.reshape(pred.size(0), -1)
# [C, N] -> [N, C]
pred = pred.transpose(0, 1).contiguous()
# (B, d_1, d_2, ..., d_k) --> (B * d_1 * d_2 * ... * d_k,)
target = target.view(-1).contiguous()
assert pred.size(0) == target.size(
0
), "The shape of pred doesn't match the shape of target"
valid_mask = target != self.ignore_index
target = target[valid_mask]
pred = pred[valid_mask]
pred = F.softmax(pred, dim=1)
num_classes = pred.shape[1]
target = F.one_hot(
torch.clamp(target.long(), 0, num_classes - 1), num_classes=num_classes
)
total_loss = 0
for i in range(num_classes):
if i != self.ignore_index:
num = torch.sum(torch.mul(pred[:, i], target[:, i])) * 2 + self.smooth
den = (
torch.sum(
pred[:, i].pow(self.exponent) + target[:, i].pow(self.exponent)
)
+ self.smooth
)
dice_loss = 1 - num / den
total_loss += dice_loss
loss = total_loss / num_classes
return self.loss_weight * loss