Find3D / Pointcept /configs /s3dis /insseg-ppt-v1m1-0-pointgroup-spunet-ft-vs0p05.py
ziqima's picture
initial commit
4893ce0
raw
history blame
8.16 kB
_base_ = ["../_base_/default_runtime.py"]
# misc custom setting
batch_size = 12 # bs: total bs in all gpus
num_worker = 24
mix_prob = 0
empty_cache = False
enable_amp = True
evaluate = True
find_unused_parameters = True
class_names = [
"ceiling",
"floor",
"wall",
"beam",
"column",
"window",
"door",
"table",
"chair",
"sofa",
"bookcase",
"board",
"clutter",
]
num_classes = 13
segment_ignore_index = (-1,)
# model settings
model = dict(
type="PG-v1m1",
backbone=dict(
type="PPT-v1m1",
backbone=dict(
type="SpUNet-v1m3",
in_channels=6,
num_classes=0,
base_channels=32,
context_channels=256,
channels=(32, 64, 128, 256, 256, 128, 96, 96),
layers=(2, 3, 4, 6, 2, 2, 2, 2),
cls_mode=False,
conditions=("ScanNet", "S3DIS", "Structured3D"),
zero_init=False,
norm_decouple=True,
norm_adaptive=True,
norm_affine=True,
),
criteria=[dict(type="CrossEntropyLoss", loss_weight=1.0, ignore_index=-1)],
backbone_out_channels=96,
context_channels=256,
conditions=("Structured3D", "ScanNet", "S3DIS"),
template="[x]",
clip_model="ViT-B/16",
class_name=(
"wall",
"floor",
"cabinet",
"bed",
"chair",
"sofa",
"table",
"door",
"window",
"bookshelf",
"bookcase",
"picture",
"counter",
"desk",
"shelves",
"curtain",
"dresser",
"pillow",
"mirror",
"ceiling",
"refrigerator",
"television",
"shower curtain",
"nightstand",
"toilet",
"sink",
"lamp",
"bathtub",
"garbagebin",
"board",
"beam",
"column",
"clutter",
"otherstructure",
"otherfurniture",
"otherprop",
),
valid_index=(
(
0,
1,
2,
3,
4,
5,
6,
7,
8,
11,
13,
14,
15,
16,
17,
18,
19,
20,
21,
23,
25,
26,
33,
34,
35,
),
(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 20, 22, 24, 25, 27, 34),
(0, 1, 4, 5, 6, 7, 8, 10, 19, 29, 30, 31, 32),
),
backbone_mode=True,
),
backbone_out_channels=96,
semantic_num_classes=num_classes,
semantic_ignore_index=-1,
segment_ignore_index=segment_ignore_index,
instance_ignore_index=-1,
cluster_thresh=1.5,
cluster_closed_points=300,
cluster_propose_points=100,
cluster_min_points=50,
voxel_size=0.05,
)
# scheduler settings
epoch = 3000
optimizer = dict(type="SGD", lr=0.1, momentum=0.9, weight_decay=0.0001, nesterov=True)
scheduler = dict(type="PolyLR")
# dataset settings
dataset_type = "S3DISDataset"
data_root = "data/s3dis"
data = dict(
num_classes=num_classes,
ignore_index=-1,
names=class_names,
train=dict(
type=dataset_type,
split=("Area_1", "Area_2", "Area_3", "Area_4", "Area_6"),
data_root=data_root,
transform=[
dict(type="CenterShift", apply_z=True),
dict(
type="RandomDropout", dropout_ratio=0.2, dropout_application_ratio=0.5
),
# dict(type="RandomRotateTargetAngle", angle=(1/2, 1, 3/2), center=[0, 0, 0], axis='z', p=0.75),
dict(type="RandomRotate", angle=[-1, 1], axis="z", center=[0, 0, 0], p=0.5),
dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="x", p=0.5),
dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="y", p=0.5),
dict(type="RandomScale", scale=[0.9, 1.1]),
# dict(type="RandomShift", shift=[0.2, 0.2, 0.2]),
dict(type="RandomFlip", p=0.5),
# dict(type="RandomJitter", sigma=0.005, clip=0.02),
# dict(type="ElasticDistortion", distortion_params=[[0.2, 0.4], [0.8, 1.6]]),
dict(type="ChromaticAutoContrast", p=0.2, blend_factor=None),
dict(type="ChromaticTranslation", p=0.95, ratio=0.05),
dict(type="ChromaticJitter", p=0.95, std=0.005),
# dict(type="HueSaturationTranslation", hue_max=0.2, saturation_max=0.2),
# dict(type="RandomColorDrop", p=0.2, color_augment=0.0),
dict(
type="GridSample",
grid_size=0.05,
hash_type="fnv",
mode="train",
return_grid_coord=True,
keys=("coord", "color", "normal", "segment", "instance"),
),
dict(type="SphereCrop", sample_rate=0.8, mode="random"),
dict(type="NormalizeColor"),
dict(
type="InstanceParser",
segment_ignore_index=segment_ignore_index,
instance_ignore_index=-1,
),
dict(type="Add", keys_dict={"condition": "S3DIS"}),
dict(type="ToTensor"),
dict(
type="Collect",
keys=(
"coord",
"grid_coord",
"segment",
"instance",
"instance_centroid",
"bbox",
"condition",
),
feat_keys=("color", "normal"),
),
],
test_mode=False,
),
val=dict(
type=dataset_type,
split="Area_5",
data_root=data_root,
transform=[
dict(type="CenterShift", apply_z=True),
dict(
type="Copy",
keys_dict={
"coord": "origin_coord",
"segment": "origin_segment",
"instance": "origin_instance",
},
),
dict(
type="GridSample",
grid_size=0.05,
hash_type="fnv",
mode="train",
return_grid_coord=True,
keys=("coord", "color", "normal", "segment", "instance"),
),
# dict(type="SphereCrop", point_max=1000000, mode='center'),
dict(type="CenterShift", apply_z=False),
dict(type="NormalizeColor"),
dict(
type="InstanceParser",
segment_ignore_index=segment_ignore_index,
instance_ignore_index=-1,
),
dict(type="Add", keys_dict={"condition": "S3DIS"}),
dict(type="ToTensor"),
dict(
type="Collect",
keys=(
"coord",
"grid_coord",
"segment",
"instance",
"origin_coord",
"origin_segment",
"origin_instance",
"instance_centroid",
"bbox",
"condition",
),
feat_keys=("color", "normal"),
offset_keys_dict=dict(offset="coord", origin_offset="origin_coord"),
),
],
test_mode=False,
),
test=dict(), # currently not available
)
hooks = [
dict(type="CheckpointLoader", keywords="module.", replacement="module.backbone."),
dict(type="IterationTimer", warmup_iter=2),
dict(type="InformationWriter"),
dict(
type="InsSegEvaluator",
segment_ignore_index=segment_ignore_index,
instance_ignore_index=-1,
),
dict(type="CheckpointSaver", save_freq=None),
]