Spaces:
Running
on
Zero
Running
on
Zero
_base_ = ["../_base_/default_runtime.py"] | |
# misc custom setting | |
batch_size = 12 # bs: total bs in all gpus | |
num_worker = 24 | |
mix_prob = 0 | |
empty_cache = False | |
enable_amp = True | |
evaluate = True | |
find_unused_parameters = True | |
class_names = [ | |
"ceiling", | |
"floor", | |
"wall", | |
"beam", | |
"column", | |
"window", | |
"door", | |
"table", | |
"chair", | |
"sofa", | |
"bookcase", | |
"board", | |
"clutter", | |
] | |
num_classes = 13 | |
segment_ignore_index = (-1,) | |
# model settings | |
model = dict( | |
type="PG-v1m1", | |
backbone=dict( | |
type="PPT-v1m1", | |
backbone=dict( | |
type="SpUNet-v1m3", | |
in_channels=6, | |
num_classes=0, | |
base_channels=32, | |
context_channels=256, | |
channels=(32, 64, 128, 256, 256, 128, 96, 96), | |
layers=(2, 3, 4, 6, 2, 2, 2, 2), | |
cls_mode=False, | |
conditions=("ScanNet", "S3DIS", "Structured3D"), | |
zero_init=False, | |
norm_decouple=True, | |
norm_adaptive=True, | |
norm_affine=True, | |
), | |
criteria=[dict(type="CrossEntropyLoss", loss_weight=1.0, ignore_index=-1)], | |
backbone_out_channels=96, | |
context_channels=256, | |
conditions=("Structured3D", "ScanNet", "S3DIS"), | |
template="[x]", | |
clip_model="ViT-B/16", | |
class_name=( | |
"wall", | |
"floor", | |
"cabinet", | |
"bed", | |
"chair", | |
"sofa", | |
"table", | |
"door", | |
"window", | |
"bookshelf", | |
"bookcase", | |
"picture", | |
"counter", | |
"desk", | |
"shelves", | |
"curtain", | |
"dresser", | |
"pillow", | |
"mirror", | |
"ceiling", | |
"refrigerator", | |
"television", | |
"shower curtain", | |
"nightstand", | |
"toilet", | |
"sink", | |
"lamp", | |
"bathtub", | |
"garbagebin", | |
"board", | |
"beam", | |
"column", | |
"clutter", | |
"otherstructure", | |
"otherfurniture", | |
"otherprop", | |
), | |
valid_index=( | |
( | |
0, | |
1, | |
2, | |
3, | |
4, | |
5, | |
6, | |
7, | |
8, | |
11, | |
13, | |
14, | |
15, | |
16, | |
17, | |
18, | |
19, | |
20, | |
21, | |
23, | |
25, | |
26, | |
33, | |
34, | |
35, | |
), | |
(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 20, 22, 24, 25, 27, 34), | |
(0, 1, 4, 5, 6, 7, 8, 10, 19, 29, 30, 31, 32), | |
), | |
backbone_mode=True, | |
), | |
backbone_out_channels=96, | |
semantic_num_classes=num_classes, | |
semantic_ignore_index=-1, | |
segment_ignore_index=segment_ignore_index, | |
instance_ignore_index=-1, | |
cluster_thresh=1.5, | |
cluster_closed_points=300, | |
cluster_propose_points=100, | |
cluster_min_points=50, | |
voxel_size=0.05, | |
) | |
# scheduler settings | |
epoch = 3000 | |
optimizer = dict(type="SGD", lr=0.1, momentum=0.9, weight_decay=0.0001, nesterov=True) | |
scheduler = dict(type="PolyLR") | |
# dataset settings | |
dataset_type = "S3DISDataset" | |
data_root = "data/s3dis" | |
data = dict( | |
num_classes=num_classes, | |
ignore_index=-1, | |
names=class_names, | |
train=dict( | |
type=dataset_type, | |
split=("Area_1", "Area_2", "Area_3", "Area_4", "Area_6"), | |
data_root=data_root, | |
transform=[ | |
dict(type="CenterShift", apply_z=True), | |
dict( | |
type="RandomDropout", dropout_ratio=0.2, dropout_application_ratio=0.5 | |
), | |
# dict(type="RandomRotateTargetAngle", angle=(1/2, 1, 3/2), center=[0, 0, 0], axis='z', p=0.75), | |
dict(type="RandomRotate", angle=[-1, 1], axis="z", center=[0, 0, 0], p=0.5), | |
dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="x", p=0.5), | |
dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="y", p=0.5), | |
dict(type="RandomScale", scale=[0.9, 1.1]), | |
# dict(type="RandomShift", shift=[0.2, 0.2, 0.2]), | |
dict(type="RandomFlip", p=0.5), | |
# dict(type="RandomJitter", sigma=0.005, clip=0.02), | |
# dict(type="ElasticDistortion", distortion_params=[[0.2, 0.4], [0.8, 1.6]]), | |
dict(type="ChromaticAutoContrast", p=0.2, blend_factor=None), | |
dict(type="ChromaticTranslation", p=0.95, ratio=0.05), | |
dict(type="ChromaticJitter", p=0.95, std=0.005), | |
# dict(type="HueSaturationTranslation", hue_max=0.2, saturation_max=0.2), | |
# dict(type="RandomColorDrop", p=0.2, color_augment=0.0), | |
dict( | |
type="GridSample", | |
grid_size=0.05, | |
hash_type="fnv", | |
mode="train", | |
return_grid_coord=True, | |
keys=("coord", "color", "normal", "segment", "instance"), | |
), | |
dict(type="SphereCrop", sample_rate=0.8, mode="random"), | |
dict(type="NormalizeColor"), | |
dict( | |
type="InstanceParser", | |
segment_ignore_index=segment_ignore_index, | |
instance_ignore_index=-1, | |
), | |
dict(type="Add", keys_dict={"condition": "S3DIS"}), | |
dict(type="ToTensor"), | |
dict( | |
type="Collect", | |
keys=( | |
"coord", | |
"grid_coord", | |
"segment", | |
"instance", | |
"instance_centroid", | |
"bbox", | |
"condition", | |
), | |
feat_keys=("color", "normal"), | |
), | |
], | |
test_mode=False, | |
), | |
val=dict( | |
type=dataset_type, | |
split="Area_5", | |
data_root=data_root, | |
transform=[ | |
dict(type="CenterShift", apply_z=True), | |
dict( | |
type="Copy", | |
keys_dict={ | |
"coord": "origin_coord", | |
"segment": "origin_segment", | |
"instance": "origin_instance", | |
}, | |
), | |
dict( | |
type="GridSample", | |
grid_size=0.05, | |
hash_type="fnv", | |
mode="train", | |
return_grid_coord=True, | |
keys=("coord", "color", "normal", "segment", "instance"), | |
), | |
# dict(type="SphereCrop", point_max=1000000, mode='center'), | |
dict(type="CenterShift", apply_z=False), | |
dict(type="NormalizeColor"), | |
dict( | |
type="InstanceParser", | |
segment_ignore_index=segment_ignore_index, | |
instance_ignore_index=-1, | |
), | |
dict(type="Add", keys_dict={"condition": "S3DIS"}), | |
dict(type="ToTensor"), | |
dict( | |
type="Collect", | |
keys=( | |
"coord", | |
"grid_coord", | |
"segment", | |
"instance", | |
"origin_coord", | |
"origin_segment", | |
"origin_instance", | |
"instance_centroid", | |
"bbox", | |
"condition", | |
), | |
feat_keys=("color", "normal"), | |
offset_keys_dict=dict(offset="coord", origin_offset="origin_coord"), | |
), | |
], | |
test_mode=False, | |
), | |
test=dict(), # currently not available | |
) | |
hooks = [ | |
dict(type="CheckpointLoader", keywords="module.", replacement="module.backbone."), | |
dict(type="IterationTimer", warmup_iter=2), | |
dict(type="InformationWriter"), | |
dict( | |
type="InsSegEvaluator", | |
segment_ignore_index=segment_ignore_index, | |
instance_ignore_index=-1, | |
), | |
dict(type="CheckpointSaver", save_freq=None), | |
] | |