Find3D / Pointcept /configs /nuscenes /semseg-spunet-v1m1-0-base.py
ziqima's picture
initial commit
4893ce0
raw
history blame
5.76 kB
_base_ = ["../_base_/default_runtime.py"]
# misc custom setting
batch_size = 12 # bs: total bs in all gpus
mix_prob = 0
empty_cache = False
enable_amp = True
# model settings
model = dict(
type="DefaultSegmentor",
backbone=dict(
type="SpUNet-v1m1",
in_channels=4,
num_classes=16,
channels=(32, 64, 128, 256, 256, 128, 96, 96),
layers=(2, 3, 4, 6, 2, 2, 2, 2),
),
criteria=[dict(type="CrossEntropyLoss", loss_weight=1.0, ignore_index=-1)],
)
# scheduler settings
epoch = 50
eval_epoch = 50
optimizer = dict(type="AdamW", lr=0.002, weight_decay=0.005)
scheduler = dict(
type="OneCycleLR",
max_lr=optimizer["lr"],
pct_start=0.04,
anneal_strategy="cos",
div_factor=10.0,
final_div_factor=100.0,
)
# dataset settings
dataset_type = "NuScenesDataset"
data_root = "data/nuscenes"
ignore_index = -1
names = [
"barrier",
"bicycle",
"bus",
"car",
"construction_vehicle",
"motorcycle",
"pedestrian",
"traffic_cone",
"trailer",
"truck",
"driveable_surface",
"other_flat",
"sidewalk",
"terrain",
"manmade",
"vegetation",
]
data = dict(
num_classes=16,
ignore_index=ignore_index,
names=names,
train=dict(
type=dataset_type,
split="train",
data_root=data_root,
transform=[
# dict(type="RandomDropout", dropout_ratio=0.2, dropout_application_ratio=0.2),
# dict(type="RandomRotateTargetAngle", angle=(1/2, 1, 3/2), center=[0, 0, 0], axis='z', p=0.75),
dict(type="RandomRotate", angle=[-1, 1], axis="z", center=[0, 0, 0], p=0.5),
# dict(type="RandomRotate", angle=[-1/6, 1/6], axis='x', p=0.5),
# dict(type="RandomRotate", angle=[-1/6, 1/6], axis='y', p=0.5),
dict(type="RandomScale", scale=[0.9, 1.1]),
# dict(type="RandomShift", shift=[0.2, 0.2, 0.2]),
dict(type="RandomFlip", p=0.5),
dict(type="RandomJitter", sigma=0.005, clip=0.02),
# dict(type="ElasticDistortion", distortion_params=[[0.2, 0.4], [0.8, 1.6]]),
dict(
type="GridSample",
grid_size=0.05,
hash_type="fnv",
mode="train",
keys=("coord", "strength", "segment"),
return_grid_coord=True,
),
# dict(type="SphereCrop", point_max=1000000, mode="random"),
# dict(type="CenterShift", apply_z=False),
dict(type="ToTensor"),
dict(
type="Collect",
keys=("coord", "grid_coord", "segment"),
feat_keys=("coord", "strength"),
),
],
test_mode=False,
ignore_index=ignore_index,
),
val=dict(
type=dataset_type,
split="val",
data_root=data_root,
transform=[
# dict(type="PointClip", point_cloud_range=(-51.2, -51.2, -4, 51.2, 51.2, 2.4)),
dict(
type="GridSample",
grid_size=0.05,
hash_type="fnv",
mode="train",
keys=("coord", "strength", "segment"),
return_grid_coord=True,
),
# dict(type="SphereCrop", point_max=1000000, mode='center'),
dict(type="ToTensor"),
dict(
type="Collect",
keys=("coord", "grid_coord", "segment"),
feat_keys=("coord", "strength"),
),
],
test_mode=False,
ignore_index=ignore_index,
),
test=dict(
type=dataset_type,
split="val",
data_root=data_root,
transform=[
dict(type="Copy", keys_dict={"segment": "origin_segment"}),
dict(
type="GridSample",
grid_size=0.025,
hash_type="fnv",
mode="train",
keys=("coord", "strength", "segment"),
return_inverse=True,
),
],
test_mode=True,
test_cfg=dict(
voxelize=dict(
type="GridSample",
grid_size=0.05,
hash_type="fnv",
mode="test",
return_grid_coord=True,
keys=("coord", "strength"),
),
crop=None,
post_transform=[
dict(type="ToTensor"),
dict(
type="Collect",
keys=("coord", "grid_coord", "index"),
feat_keys=("coord", "strength"),
),
],
aug_transform=[
[dict(type="RandomScale", scale=[0.9, 0.9])],
[dict(type="RandomScale", scale=[0.95, 0.95])],
[dict(type="RandomScale", scale=[1, 1])],
[dict(type="RandomScale", scale=[1.05, 1.05])],
[dict(type="RandomScale", scale=[1.1, 1.1])],
[
dict(type="RandomScale", scale=[0.9, 0.9]),
dict(type="RandomFlip", p=1),
],
[
dict(type="RandomScale", scale=[0.95, 0.95]),
dict(type="RandomFlip", p=1),
],
[dict(type="RandomScale", scale=[1, 1]), dict(type="RandomFlip", p=1)],
[
dict(type="RandomScale", scale=[1.05, 1.05]),
dict(type="RandomFlip", p=1),
],
[
dict(type="RandomScale", scale=[1.1, 1.1]),
dict(type="RandomFlip", p=1),
],
],
),
ignore_index=ignore_index,
),
)