Find3D / Pointcept /configs /nuscenes /semseg-ppt-v1m1-0-nu-sk-wa-spunet.py
ziqima's picture
initial commit
4893ce0
raw
history blame
13.1 kB
_base_ = ["../_base_/default_runtime.py"]
# misc custom setting
batch_size = 12 # bs: total bs in all gpus
num_worker = 24
mix_prob = 0.8
empty_cache = False
enable_amp = True
find_unused_parameters = True
# trainer
train = dict(
type="MultiDatasetTrainer",
)
# model settings
model = dict(
type="PPT-v1m1",
backbone=dict(
type="SpUNet-v1m3",
in_channels=4,
num_classes=0,
base_channels=32,
context_channels=256,
channels=(32, 64, 128, 256, 256, 128, 96, 96),
layers=(2, 3, 4, 6, 2, 2, 2, 2),
cls_mode=False,
conditions=("SemanticKITTI", "nuScenes", "Waymo"),
zero_init=False,
norm_decouple=True,
norm_adaptive=False,
norm_affine=True,
),
criteria=[
dict(type="CrossEntropyLoss", loss_weight=1.0, ignore_index=-1),
dict(type="LovaszLoss", mode="multiclass", loss_weight=1.0, ignore_index=-1),
],
backbone_out_channels=96,
context_channels=256,
conditions=("SemanticKITTI", "nuScenes", "Waymo"),
template="[x]",
clip_model="ViT-B/16",
# fmt: off
class_name=(
# SemanticKITTI
"car", "bicycle", "motorcycle", "truck", "other vehicle",
"person", "person who rides a bicycle", "person who rides a motorcycle", "road", "parking",
"path for pedestrians at the side of a road", "other ground", "building", "fence", "vegetation",
"trunk", "terrain", "pole", "traffic sign",
# nuScenes
"barrier", "bicycle", "bus", "car", "construction vehicle",
"motorcycle", "pedestrian", "traffic cone", "trailer", "truck",
"path suitable or safe for driving", "other flat", "sidewalk", "terrain", "man made", "vegetation",
# waymo
"car", "truck", "bus", "other vehicle", "person who rides a motorcycle",
"person who rides a bicycle", "pedestrian", "sign", "traffic light", "pole",
"construction cone", "bicycle", "motorcycle", "building", "vegetation",
"tree trunk", "curb", "road", "lane marker", "other ground", "horizontal surface that can not drive",
"surface when pedestrians most likely to walk on",
),
valid_index=(
[i for i in range(19)],
[i for i in range(19, 19 + 16)],
[i for i in range(19 + 16, 19 + 16 + 22)],
),
# fmt: on
backbone_mode=False,
)
# scheduler settings
epoch = 50
eval_epoch = 50
optimizer = dict(type="AdamW", lr=0.002, weight_decay=0.005)
scheduler = dict(
type="OneCycleLR",
max_lr=optimizer["lr"],
pct_start=0.04,
anneal_strategy="cos",
div_factor=10.0,
final_div_factor=100.0,
)
# param_dicts = [dict(keyword="modulation", lr=0.0002)]
# dataset settings
data = dict(
num_classes=16,
ignore_index=-1,
names=[
"barrier",
"bicycle",
"bus",
"car",
"construction_vehicle",
"motorcycle",
"pedestrian",
"traffic_cone",
"trailer",
"truck",
"driveable_surface",
"other_flat",
"sidewalk",
"terrain",
"manmade",
"vegetation",
],
train=dict(
type="ConcatDataset",
datasets=[
# nuScenes
dict(
type="NuScenesDataset",
split="train",
data_root="data/nuscenes",
transform=[
# dict(type="RandomDropout", dropout_ratio=0.2, dropout_application_ratio=0.2),
# dict(type="RandomRotateTargetAngle", angle=(1/2, 1, 3/2), center=[0, 0, 0], axis='z', p=0.75),
dict(
type="RandomRotate",
angle=[-1, 1],
axis="z",
center=[0, 0, 0],
p=0.5,
),
# dict(type="RandomRotate", angle=[-1/6, 1/6], axis='x', p=0.5),
# dict(type="RandomRotate", angle=[-1/6, 1/6], axis='y', p=0.5),
dict(
type="PointClip",
point_cloud_range=(-35.2, -35.2, -4, 35.2, 35.2, 2),
),
dict(type="RandomScale", scale=[0.9, 1.1]),
# dict(type="RandomShift", shift=[0.2, 0.2, 0.2]),
dict(type="RandomFlip", p=0.5),
dict(type="RandomJitter", sigma=0.005, clip=0.02),
# dict(type="ElasticDistortion", distortion_params=[[0.2, 0.4], [0.8, 1.6]]),
dict(
type="GridSample",
grid_size=0.05,
hash_type="fnv",
mode="train",
keys=("coord", "strength", "segment"),
return_grid_coord=True,
),
# dict(type="SphereCrop", point_max=1000000, mode="random"),
# dict(type="CenterShift", apply_z=False),
dict(type="Add", keys_dict={"condition": "nuScenes"}),
dict(type="ToTensor"),
dict(
type="Collect",
keys=("coord", "grid_coord", "segment", "condition"),
feat_keys=("coord", "strength"),
),
],
test_mode=False,
ignore_index=-1,
loop=1,
),
# SemanticKITTI
dict(
type="SemanticKITTIDataset",
split="train",
data_root="data/semantic_kitti",
transform=[
# dict(type="RandomDropout", dropout_ratio=0.2, dropout_application_ratio=0.2),
# dict(type="RandomRotateTargetAngle", angle=(1/2, 1, 3/2), center=[0, 0, 0], axis="z", p=0.75),
dict(
type="RandomRotate",
angle=[-1, 1],
axis="z",
center=[0, 0, 0],
p=0.5,
),
# dict(type="RandomRotate", angle=[-1/6, 1/6], axis="x", p=0.5),
# dict(type="RandomRotate", angle=[-1/6, 1/6], axis="y", p=0.5),
dict(
type="PointClip",
point_cloud_range=(-75.2, -75.2, -4, 75.2, 75.2, 2),
),
dict(type="RandomScale", scale=[0.9, 1.1]),
# dict(type="RandomShift", shift=[0.2, 0.2, 0.2]),
dict(type="RandomFlip", p=0.5),
dict(type="RandomJitter", sigma=0.005, clip=0.02),
# dict(type="ElasticDistortion", distortion_params=[[0.2, 0.4], [0.8, 1.6]]),
dict(
type="GridSample",
grid_size=0.05,
hash_type="fnv",
mode="train",
keys=("coord", "strength", "segment"),
return_grid_coord=True,
),
# dict(type="SphereCrop", point_max=1000000, mode="random"),
# dict(type="CenterShift", apply_z=False),
dict(type="Add", keys_dict={"condition": "SemanticKITTI"}),
dict(type="ToTensor"),
dict(
type="Collect",
keys=("coord", "grid_coord", "segment", "condition"),
feat_keys=("coord", "strength"),
),
],
test_mode=False,
ignore_index=-1,
loop=1,
),
# Waymo
dict(
type="WaymoDataset",
split="training",
data_root="data/waymo",
transform=[
# dict(type="RandomDropout", dropout_ratio=0.2, dropout_application_ratio=0.2),
# dict(type="RandomRotateTargetAngle", angle=(1/2, 1, 3/2), center=[0, 0, 0], axis="z", p=0.75),
dict(
type="RandomRotate",
angle=[-1, 1],
axis="z",
center=[0, 0, 0],
p=0.5,
),
# dict(type="RandomRotate", angle=[-1/6, 1/6], axis="x", p=0.5),
# dict(type="RandomRotate", angle=[-1/6, 1/6], axis="y", p=0.5),
dict(
type="PointClip",
point_cloud_range=(-35.2, -35.2, -4, 35.2, 35.2, 2),
),
dict(type="RandomScale", scale=[0.9, 1.1]),
# dict(type="RandomShift", shift=[0.2, 0.2, 0.2]),
dict(type="RandomFlip", p=0.5),
dict(type="RandomJitter", sigma=0.005, clip=0.02),
# dict(type="ElasticDistortion", distortion_params=[[0.2, 0.4], [0.8, 1.6]]),
dict(
type="GridSample",
grid_size=0.05,
hash_type="fnv",
mode="train",
keys=("coord", "strength", "segment"),
return_grid_coord=True,
),
# dict(type="SphereCrop", point_max=1000000, mode="random"),
# dict(type="CenterShift", apply_z=False),
dict(type="Add", keys_dict={"condition": "Waymo"}),
dict(type="ToTensor"),
dict(
type="Collect",
keys=("coord", "grid_coord", "segment", "condition"),
feat_keys=("coord", "strength"),
),
],
test_mode=False,
ignore_index=-1,
loop=1,
),
],
),
val=dict(
type="NuScenesDataset",
split="val",
data_root="data/nuscenes",
transform=[
dict(type="PointClip", point_cloud_range=(-35.2, -35.2, -4, 35.2, 35.2, 2)),
dict(
type="GridSample",
grid_size=0.05,
hash_type="fnv",
mode="train",
keys=("coord", "strength", "segment"),
return_grid_coord=True,
),
dict(type="Add", keys_dict={"condition": "nuScenes"}),
dict(type="ToTensor"),
dict(
type="Collect",
keys=("coord", "grid_coord", "segment", "condition"),
feat_keys=("coord", "strength"),
),
],
test_mode=False,
ignore_index=-1,
),
test=dict(
type="NuScenesDataset",
split="val",
data_root="data/nuscenes",
transform=[
dict(type="Copy", keys_dict={"segment": "origin_segment"}),
dict(
type="GridSample",
grid_size=0.025,
hash_type="fnv",
mode="train",
keys=("coord", "strength", "segment"),
return_inverse=True,
),
],
test_mode=True,
test_cfg=dict(
voxelize=dict(
type="GridSample",
grid_size=0.05,
hash_type="fnv",
mode="test",
return_grid_coord=True,
keys=("coord", "strength"),
),
crop=None,
post_transform=[
dict(type="Add", keys_dict={"condition": "nuScenes"}),
dict(type="ToTensor"),
dict(
type="Collect",
keys=("coord", "grid_coord", "index", "condition"),
feat_keys=("coord", "strength"),
),
],
aug_transform=[
[dict(type="RandomScale", scale=[0.9, 0.9])],
[dict(type="RandomScale", scale=[0.95, 0.95])],
[dict(type="RandomScale", scale=[1, 1])],
[dict(type="RandomScale", scale=[1.05, 1.05])],
[dict(type="RandomScale", scale=[1.1, 1.1])],
[
dict(type="RandomScale", scale=[0.9, 0.9]),
dict(type="RandomFlip", p=1),
],
[
dict(type="RandomScale", scale=[0.95, 0.95]),
dict(type="RandomFlip", p=1),
],
[dict(type="RandomScale", scale=[1, 1]), dict(type="RandomFlip", p=1)],
[
dict(type="RandomScale", scale=[1.05, 1.05]),
dict(type="RandomFlip", p=1),
],
[
dict(type="RandomScale", scale=[1.1, 1.1]),
dict(type="RandomFlip", p=1),
],
],
),
ignore_index=-1,
),
)