File size: 30,324 Bytes
4893ce0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
"""
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
"""

import numpy as np
import torch
import torch.nn as nn
from timm.models.layers import DropPath, trunc_normal_
import MinkowskiEngine as ME
from MinkowskiEngine import SparseTensor
from Swin3D.sparse_dl.attn.attn_coff import (
    SelfAttnAIOFunction,
    PosEmb,
    TableDims,
    IndexMode,
    PrecisionMode,
)
import Swin3D.sparse_dl.knn
from Swin3D.sparse_dl.knn import KNN

from .mink_layers import (
    assign_feats,
    SparseTensorLayerNorm,
    SparseTensorLinear,
)


def query_knn_feature(
    K, src_xyz, query_xyz, src_feat, src_offset, query_offset, return_idx=False
):
    """
    gather feature in the KNN neighborhood
    """
    assert (
        src_xyz.is_contiguous()
        and query_xyz.is_contiguous()
        and src_feat.is_contiguous()
    )
    if query_xyz is None:
        query_xyz = src_xyz
        query_offset = src_offset

    idx, _ = KNN.apply(K, src_xyz, query_xyz, src_offset, query_offset)

    n, m, c = src_xyz.shape[0], query_xyz.shape[0], src_feat.shape[1]
    grouped_feat = src_feat[idx.view(-1).long(), :].view(m, K, c)

    if return_idx:
        return grouped_feat, idx
    else:
        return grouped_feat


def knn_linear_interpolation(
    src_xyz, query_xyz, src_feat, src_offset, query_offset, K=3
):
    """
    interpolation feature using distance in KNN neighborhood
    """
    N, C = query_xyz.shape[0], src_feat.shape[1]
    assert (
        src_xyz.is_contiguous()
        and query_xyz.is_contiguous()
        and src_feat.is_contiguous()
    )
    # (N, K)
    idx, dist = KNN.apply(K, src_xyz, query_xyz, src_offset, query_offset)
    weight = 1.0 / (dist + 1e-8)
    norm = torch.sum(weight, dim=1, keepdim=True)
    weight = weight / norm
    query_feat = torch.zeros((N, C), dtype=src_feat.dtype, device=src_feat.device)
    for i in range(K):
        query_feat += src_feat[idx[:, i].long(), :] * weight[:, i].unsqueeze(-1)
    return query_feat


def sparse_self_attention(
    w_w_id: torch.Tensor, w_sizes: torch.Tensor, protocol: str = "v1"
):
    """
    Args:
        indices [torch.Tensor]: sparse window index with shape [N, 2], N is the total
            number of non-empty voxels with indices (window_id, within_window_id). window_id
            is ordered and starts from 0; within_window_id is a sparse index to indicate the
            offset of kernel_size ** 3.
        feats [torch.Tensor]: sprase features of each non-empty voxel with shape [N, C]
    Outputs:
        [M, 3]: sparse indices of cofficient matrix (window_id, att_a_id, att_b_id). att_a_id
            and att_b_id are the within_window_id
        [M, 1]: the sparse coffient matrix

    Spaces:
        W: total number of windows
        N: total number of input voxels
        M: total number of output cofficients
    """
    w_sizes_2 = w_sizes**2

    # w2n_indices - [W], mapping window index to window global offset in input
    #   space
    w_cumsum = torch.cumsum(w_sizes, dim=-1)
    w2n_indices = torch.cat(
        [torch.zeros(1, dtype=w_cumsum.dtype, device=w_cumsum.device), w_cumsum[:-1]]
    )

    # w2m indices - [W], mapping window index to window global offset in output
    #   space
    w2_cumsum = torch.cumsum(w_sizes_2, dim=-1)
    w2m_indices = torch.cat(
        [torch.zeros(1, dtype=w2_cumsum.dtype, device=w2_cumsum.device), w2_cumsum[:-1]]
    )

    # m2w indices - [M], mapping element global offset to the window index
    m2w_indices = torch.zeros(
        [w2_cumsum[-1]], dtype=w_sizes.dtype, device=w_sizes.device
    )
    m2w_offset = torch.zeros(
        [w2_cumsum[-1]], dtype=w_sizes.dtype, device=w_sizes.device
    )
    m2w_indices[w2m_indices[1:]] = 1
    m2w_offset[w2m_indices[1:]] = w_sizes_2[:-1]
    m2w_indices = torch.cumsum(m2w_indices, dim=-1)
    m2w_offset = torch.cumsum(m2w_offset, dim=-1)

    # m_indices = [M], element global offset in output space
    m_indices = torch.arange(
        0, w2_cumsum[-1], dtype=w_sizes.dtype, device=w_sizes.device
    )

    # m2n_indices - [M], mapping element global offset to the window global offset
    #   in input space
    m2n_indices = w2n_indices[m2w_indices]

    m_offset = m_indices - m2w_offset
    m2w_sizes = w_sizes[m2w_indices]

    # print_log_main("m_offset:", m_offset, m_offset.shape)
    # print_log_main("m2n_indices:", m2n_indices, m2n_indices.shape)

    y_offset = m2n_indices + m_offset % m2w_sizes
    x_offset = m2n_indices + torch.div(m_offset, m2w_sizes, rounding_mode="floor")

    # print_log_main("=================================")
    # print_log_main(w_sizes[:5])
    # print_log_main(x_offset[:50])
    # print_log_main(y_offset[:50])
    # coord = torch.stack([m2w_indices, w_w_id[x_offset], w_w_id[y_offset]], axis=-1)
    if protocol == "v1":
        return x_offset, y_offset
    elif protocol == "v2":
        return x_offset, y_offset, m2w_indices, w_sizes, w2n_indices, w2m_indices


class Mlp(nn.Module):
    def __init__(
        self,
        in_features,
        hidden_features=None,
        out_features=None,
        act_layer=nn.GELU,
        drop=0.0,
    ):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class GridCoordsDown(nn.Module):
    """
    downsample the grid coordinates
    keep the nearest point to the average point of the downsampled grid
    """

    def __init__(self, stride):
        super().__init__()
        self.stride = stride
        self.avg_pool = ME.MinkowskiAvgPooling(
            kernel_size=self.stride, stride=self.stride, dimension=3
        )
        self.unpool = ME.MinkowskiPoolingTranspose(
            kernel_size=stride, stride=stride, dimension=3
        )
        self.max_pool = ME.MinkowskiMaxPooling(
            kernel_size=self.stride, stride=self.stride, dimension=3
        )

    def forward(self, coords_sp, sp, return_map=False):
        device = sp.C.device
        # is_pool = True means pooling map
        # is_pool = False means conv map (query as center)

        N = sp.shape[0]
        avg_coords_sp = self.avg_pool(coords_sp)
        dist_sp = self.unpool(avg_coords_sp) - coords_sp
        dist = dist_sp.F
        dist = -torch.sqrt((dist**2).sum(dim=1)).unsqueeze(1)
        dist_sp = assign_feats(dist_sp, dist)
        min_dist_sp = self.max_pool(dist_sp)
        map_pair = sp.coordinate_manager.kernel_map(
            dist_sp.coordinate_map_key,
            min_dist_sp.coordinate_map_key,
            stride=self.stride,
            kernel_size=self.stride,
            is_pool=True,
        )[0]
        in_map, out_map = map_pair
        broad_min_dist_sp = self.unpool(min_dist_sp)
        mask = (broad_min_dist_sp.F == dist_sp.F).squeeze(1)
        in_map = in_map[mask].long()
        out_map = out_map[mask].long()
        downsample_map = torch.zeros(N, dtype=torch.long, device=device) - 1
        downsample_map[out_map] = in_map
        assert (downsample_map >= 0).all()
        assert (dist_sp.F[downsample_map] == min_dist_sp.F).all()
        new_coords = coords_sp.F[downsample_map]
        new_coords_sp = assign_feats(sp, new_coords)
        if return_map:
            return new_coords_sp, downsample_map
        else:
            return new_coords_sp


def get_offset(batch):
    offset = []
    bs = batch.max() + 1
    for i in range(bs):
        offset.append(torch.sum(batch == i))
    offset = torch.cuda.IntTensor(offset)
    offset = offset.cumsum(dim=0).int()
    return offset


class GridDownsample(nn.Module):
    """
    use stride to downsample voxel
    use grid maxpooling with kernel_size
    """

    def __init__(self, in_channels, out_channels, kernel_size=2, stride=2):
        super().__init__()
        self.kernel_size = kernel_size
        self.stride = stride
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.sp_pool = ME.MinkowskiMaxPooling(
            kernel_size=kernel_size, stride=stride, dimension=3
        )
        self.coords_pool = GridCoordsDown(stride=stride)
        self.norm = SparseTensorLayerNorm(in_channels)
        self.linear = SparseTensorLinear(in_channels, out_channels)

    def forward(self, sp, coords_sp):
        sp_down = self.sp_pool(self.linear(self.norm(sp)))
        coords_sp_down = self.coords_pool(coords_sp, sp_down)
        return sp_down, coords_sp_down

    def extra_repr(self) -> str:
        return f"kernel_size={self.kernel_size}, stride={self.stride}, in_channels={self.in_channels}, out_channels={self.out_channels}"


class GridKNNDownsample(nn.Module):
    """
    use stride to downsample voxel
    use KNN to do maxpooling
    """

    def __init__(self, in_channels, out_channels, kernel_size=2, stride=2):
        super().__init__()
        self.stride = stride
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.k = 16
        self.sp_pool = ME.MinkowskiMaxPooling(
            kernel_size=stride, stride=stride, dimension=3
        )
        self.coords_pool = GridCoordsDown(stride=stride)
        self.norm = nn.LayerNorm(in_channels)
        self.linear = nn.Linear(in_channels, out_channels, bias=False)
        self.pool = nn.MaxPool1d(self.k)

    def forward(self, sp, coords_sp):
        # calculate the voxel
        sp_down = self.sp_pool(sp)
        # for downsampled cRSE
        coords_sp_down = self.coords_pool(coords_sp, sp_down)
        offset = get_offset(sp.C[:, 0])
        n_offset = get_offset(sp_down.C[:, 0])

        xyz = coords_sp.F[:, 1:4].detach().contiguous()
        n_xyz = coords_sp_down.F[:, 1:4].detach().contiguous()
        feats = query_knn_feature(self.k, xyz, n_xyz, sp.F, offset, n_offset)
        m, k, c = feats.shape
        feats = (
            self.linear(self.norm(feats.view(m * k, c)).view(m, k, c))
            .transpose(1, 2)
            .contiguous()
        )
        feats = self.pool(feats).squeeze(-1)
        sp = assign_feats(sp_down, feats.float())
        coords_sp = coords_sp_down
        return sp, coords_sp

    def extra_repr(self) -> str:
        return f"kernel_size={self.k}, stride={self.stride}, in_channels={self.in_channels}, out_channels={self.out_channels}"


class Upsample(nn.Module):
    """
    upsample using trilinear interpolation
    follower by attn block according to self.attn
    """

    def __init__(
        self,
        in_channels,
        out_channels,
        num_heads,
        window_size,
        quant_size,
        attn=True,
        up_k=3,
        cRSE="XYZ_RGB",
        fp16_mode=0,
    ):
        super().__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels

        self.linear1 = nn.Sequential(
            nn.LayerNorm(out_channels), nn.Linear(out_channels, out_channels)
        )
        self.linear2 = nn.Sequential(
            nn.LayerNorm(in_channels), nn.Linear(in_channels, out_channels)
        )
        self.up_k = up_k
        self.attn = attn and window_size > 0
        if self.attn:
            self.block = BasicLayer(
                dim=out_channels,
                depth=1,
                num_heads=num_heads,
                window_size=window_size,
                quant_size=quant_size,
                drop_path=0.1,
                downsample=None,
                out_channels=None,
                cRSE=cRSE,
                fp16_mode=fp16_mode,
            )

    def forward(self, sp, coords_sp, sp_up, coords_sp_up):
        feats = sp.F
        support_feats = sp_up.F
        xyz = coords_sp.F[:, 1:4].detach().contiguous()
        support_xyz = coords_sp_up.F[:, 1:4].detach().contiguous()
        offset = get_offset(sp.C[:, 0])
        support_offset = get_offset(sp_up.C[:, 0])

        feats = self.linear1(support_feats) + knn_linear_interpolation(
            xyz, support_xyz, self.linear2(feats), offset, support_offset, K=self.up_k
        )
        sp_up = assign_feats(sp_up, feats)
        if self.attn:
            sp_up, _, _ = self.block(sp_up, coords_sp_up)
        return sp_up

    def extra_repr(self) -> str:
        return f"up_k={self.up_k}, in_channels={self.in_channels}, out_channels={self.out_channels}, attn={self.attn}"


class WindowAttention(nn.Module):
    """
    Window based multi-head self attention (W-MSA) module with cRSE.
    Designed for sparse structure
    It supports both of shifted and non-shifted window.

    Args:
        dim (int): Number of input channels.
        window_size (tuple[int]): The height and width of the window.
        quant_size (int): quant_size for for finer cRSE table
        num_heads (int): Number of attention heads.
        qkv_bias (bool, optional):  If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
        attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
        proj_drop (float, optional): Dropout ratio of output. Default: 0.0
        cRSE (str | 'XYZ', 'XYZ_RGB', 'XYZ_RGB_NORM'): cRSE mode. Default: 'XYZ_RGB'
        fp16_mode (int | 0, 1, 2): fp16 mode for attention module, Default: 0
            0: fp32 forward and fp32 backward
            1: fp16 forward and fp32 backward
            2: fp16 forward and fp16 backward
    """

    def __init__(
        self,
        dim,
        window_size,
        quant_size,
        num_heads,
        qkv_bias=True,
        qk_scale=None,
        attn_drop=0.0,
        proj_drop=0.0,
        cRSE="XYZ_RGB",
        fp16_mode=0,
    ):
        super().__init__()
        self.dim = dim
        self.window_size = window_size
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim**-0.5

        # color in [-1, 1], color_windowsize = 2
        # normal in [-1, 1], normal_windowsize = 2
        self.color_windowsize = 2
        self.normal_windowsize = 2

        self.fp16_mode = fp16_mode

        table_offsets = []
        self.cRSE = cRSE
        if "XYZ" in cRSE:
            self.xyz_quant_size = quant_size
            quant_grid_length_xyz = window_size * self.xyz_quant_size
            table_shape_xyz = (3, 2 * quant_grid_length_xyz, num_heads, head_dim)
            self.query_xyz_table = nn.Parameter(torch.zeros(table_shape_xyz))
            trunc_normal_(self.query_xyz_table, std=0.02)
            self.key_xyz_table = nn.Parameter(torch.zeros(table_shape_xyz))
            trunc_normal_(self.key_xyz_table, std=0.02)
            self.value_xyz_table = nn.Parameter(torch.zeros(table_shape_xyz))
            trunc_normal_(self.value_xyz_table, std=0.02)
            table_offsets += [np.prod(table_shape_xyz[1:])] * 3

        if "RGB" in cRSE:
            self.color_quant_size = quant_size * 2
            quant_grid_length_rgb = self.color_windowsize * self.color_quant_size
            table_shape_rgb = (3, 2 * quant_grid_length_rgb, num_heads, head_dim)
            self.query_rgb_table = nn.Parameter(torch.zeros(table_shape_rgb))
            trunc_normal_(self.query_rgb_table, std=0.02)
            self.key_rgb_table = nn.Parameter(torch.zeros(table_shape_rgb))
            trunc_normal_(self.key_rgb_table, std=0.02)
            self.value_rgb_table = nn.Parameter(torch.zeros(table_shape_rgb))
            trunc_normal_(self.value_rgb_table, std=0.02)
            table_offsets += [np.prod(table_shape_rgb[1:])] * 3

        if "NORM" in cRSE:
            self.normal_quant_size = quant_size * 2
            quant_grid_length_norm = self.normal_windowsize * self.normal_quant_size
            table_shape_norm = (3, 2 * quant_grid_length_norm, num_heads, head_dim)
            self.query_norm_table = nn.Parameter(torch.zeros(table_shape_norm))
            trunc_normal_(self.query_norm_table, std=0.02)
            self.key_norm_table = nn.Parameter(torch.zeros(table_shape_norm))
            trunc_normal_(self.key_norm_table, std=0.02)
            self.value_norm_table = nn.Parameter(torch.zeros(table_shape_norm))
            trunc_normal_(self.value_norm_table, std=0.02)
            table_offsets += [np.prod(table_shape_norm[1:])] * 3

        self.table_offsets = table_offsets

        self.quant_size = quant_size

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop, inplace=True)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop, inplace=True)

        self.softmax = nn.Softmax(dim=-1)

    def forward(self, feats: torch.Tensor, attn_args):
        """Forward function.

        Args:
            feats: N, C
            attn_args: arguments for computing attention
        """
        num_v, _ = feats.shape
        num_sc = self.dim // self.num_heads

        (
            x_offset,
            y_offset,
            m2w_indices,
            w_sizes,
            w2n_indices,
            n2n_indices,
            w2m_indices,
            n_coords,
        ) = attn_args

        # Query, Key, Value
        qkv = self.qkv(feats)
        qkv = (
            qkv.reshape(num_v, 3, self.num_heads, num_sc)
            .permute(1, 0, 2, 3)
            .contiguous()
        )
        query, key, value = qkv[0], qkv[1], qkv[2]  # [N, num_heads, C//num_heads]
        query = query * self.scale

        table_offsets = torch.IntTensor(self.table_offsets).cuda()
        query_table, key_table, value_table = [], [], []
        n_cRSE = []
        if "XYZ" in self.cRSE:
            n_xyz = n_coords[:, 0:3]
            n_xyz = n_xyz * self.quant_size
            n_cRSE.append(n_xyz)
            query_table.append(self.query_xyz_table.view(-1))
            key_table.append(self.key_xyz_table.view(-1))
            value_table.append(self.value_xyz_table.view(-1))
        if "RGB" in self.cRSE:
            n_rgb = n_coords[:, 3:6]
            n_rgb = n_rgb * self.color_quant_size
            n_cRSE.append(n_rgb)
            query_table.append(self.query_rgb_table.view(-1))
            key_table.append(self.key_rgb_table.view(-1))
            value_table.append(self.value_rgb_table.view(-1))
        if "NORM" in self.cRSE:
            n_norm = n_coords[:, 6:9]
            n_norm = n_norm * self.normal_quant_size
            n_cRSE.append(n_norm)
            query_table.append(self.query_norm_table.view(-1))
            key_table.append(self.key_norm_table.view(-1))
            value_table.append(self.value_norm_table.view(-1))

        n_cRSE = torch.cat(n_cRSE, dim=1)

        indices = [m2w_indices, w_sizes, w2m_indices, w2n_indices, n2n_indices, n_cRSE]
        query_table = torch.cat(query_table)
        key_table = torch.cat(key_table)
        value_table = torch.cat(value_table)

        if self.fp16_mode == 0:
            # do not use fp16
            # cast q,k,v to fp32 in forward and backward
            fp16_mode = PrecisionMode.HALF_NONE
        elif self.fp16_mode == 1:
            # use fp16 only in forward
            fp16_mode = PrecisionMode.HALF_FORWARD
        elif self.fp16_mode == 2:
            # use fp16 both in forward and backward
            fp16_mode = PrecisionMode.HALF_ALL

        updated_values = SelfAttnAIOFunction.apply(
            query,
            key,
            value,
            query_table,
            key_table,
            value_table,
            table_offsets,
            indices,
            PosEmb.SEPARATE,
            TableDims.D0,
            IndexMode.INDIRECT,
            fp16_mode,
        )

        updated_values = updated_values.flatten(1)
        updated_feats = updated_values.view(num_v, self.dim)

        updated_feats = self.proj(updated_feats)
        updated_feats = self.proj_drop(updated_feats)  # [N, C]

        return updated_feats


class SwinTransformerBlock(nn.Module):
    def __init__(
        self,
        dim,
        num_heads,
        window_size,
        quant_size,
        drop_path=0.0,
        mlp_ratio=4.0,
        qkv_bias=True,
        qk_scale=None,
        act_layer=nn.GELU,
        norm_layer=nn.LayerNorm,
        cRSE="XYZ_RGB",
        fp16_mode=0,
    ):
        super().__init__()
        self.window_size = window_size

        self.norm1 = norm_layer(dim)
        self.attn = WindowAttention(
            dim,
            window_size=self.window_size,
            quant_size=quant_size,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            qk_scale=qk_scale,
            cRSE=cRSE,
            fp16_mode=fp16_mode,
        )

        self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(
            in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer
        )

    def forward(self, feats, attn_args):
        # feats: [N, c]
        short_cut = feats
        feats = self.norm1(feats)
        feats = self.attn(feats, attn_args)  # [N, c]

        feats = short_cut + self.drop_path(feats)
        feats = feats + self.drop_path(self.mlp(self.norm2(feats)))

        return feats


class BasicLayer(nn.Module):
    """A basic Swin3D layer for one stage.

    Args:
        dim (int): Number of input channels.
        depth (int): Number of blocks.
        num_heads (int): Number of attention heads.
        window_size (int): Local window size.
        quant_size (int): quant_size for for finer cRSE table
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
        drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
        norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
        downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
        cRSE (str | 'XYZ', 'XYZ_RGB', 'XYZ_RGB_NORM'): cRSE mode. Default: 'XYZ_RGB'
        fp16_mode (int | 0, 1, 2): fp16 mode for attention module, Default: 0
            0: fp32 forward and fp32 backward
            1: fp16 forward and fp32 backward
            2: fp16 forward and fp16 backward
    """

    def __init__(
        self,
        dim,
        depth,
        num_heads,
        window_size,
        quant_size,
        out_channels=None,
        mlp_ratio=4.0,
        qkv_bias=True,
        qk_scale=None,
        drop_path=0.0,
        norm_layer=nn.LayerNorm,
        downsample=None,
        down_stride=2,
        cRSE="XYZ_RGB",
        fp16_mode=0,
    ):
        super().__init__()
        self.window_size = window_size
        self.depth = depth
        self.dim = dim
        self.num_heads = num_heads
        self.quant_size = quant_size
        self.cRSE = cRSE
        self.fp16_mode = fp16_mode

        self.shift_size = window_size // 2
        # build blocks
        self.blocks = nn.ModuleList(
            [
                SwinTransformerBlock(
                    dim,
                    num_heads,
                    window_size,
                    quant_size,
                    drop_path=(
                        drop_path[i] if isinstance(drop_path, list) else drop_path
                    ),
                    mlp_ratio=mlp_ratio,
                    qkv_bias=qkv_bias,
                    qk_scale=qk_scale,
                    norm_layer=norm_layer,
                    cRSE=cRSE,
                    fp16_mode=fp16_mode,
                )
                for i in range(depth)
            ]
        )

        self.pool = ME.MinkowskiMaxPooling(
            kernel_size=self.window_size, stride=self.window_size, dimension=3
        )

        if downsample is not None:
            if out_channels is None:
                out_channels = dim * 2
            self.downsample = downsample(
                dim, out_channels, kernel_size=down_stride, stride=down_stride
            )
        else:
            self.downsample = None

    def get_map_pair(self, sp):
        """
        use minkowski pool to calculate windows
        get the mapping from voxel to window
        """
        window_size = [self.window_size] * 3
        pool_sp = self.pool(sp)
        windows = pool_sp.C
        window_N = windows.shape[0]

        stride_in = sp.coordinate_map_key.get_tensor_stride()
        x, y, z = [
            torch.arange(window_size[i], device=self.device) * stride_in[i]
            for i in range(3)
        ]
        x, y, z = torch.meshgrid(x, y, z)
        i = torch.zeros_like(x, device=self.device)
        local_window = torch.stack([i, x, y, z], dim=-1).flatten(0, -2)
        all_windows = windows.unsqueeze(1) + local_window.unsqueeze(0)
        all_windows = all_windows.flatten(0, -2).int()
        cm = sp.coordinate_manager
        query_key, (map, inverse_map) = cm.insert_and_map(
            all_windows, tensor_stride=stride_in
        )
        map_pair = cm.kernel_map(query_key, sp.coordinate_map_key, kernel_size=1)[0]
        return map_pair, window_N

    def get_window_mapping(self, sp):
        """
        calculate the relationshape in the window:
        w_w_id: non-empty idx inside the window(sorted by window)
        w_w_xyz: xyz inside the window(sorted by window)
        nempty_num: non-empty voxel number in each window
        sort_idx: sort voxel according to window_id, to gather the point inside the same window
        inv_sort_idx: inverse sort index
        """
        map_pair, window_N = self.get_map_pair(sp)
        window_size = self.window_size
        nW = window_size**3
        in_map, out_map = map_pair
        in_map, sort_idx = torch.sort(in_map)
        # assert out_map == arange(out_map.shape[0])
        out_map = out_map[sort_idx]
        sort_idx = out_map.long()
        inv_sort_idx = torch.zeros_like(sort_idx)
        inv_sort_idx[sort_idx] = torch.arange(
            sort_idx.shape[0], dtype=sort_idx.dtype, device=self.device
        )
        N = window_N * nW
        v2w_mask = torch.zeros(N, dtype=torch.bool, device=self.device)
        w_id = (
            torch.arange(window_N, dtype=torch.long, device=self.device)
            .unsqueeze(1)
            .repeat(1, nW)
            .view(-1)
        )
        w_w_id = (
            torch.arange(nW, dtype=torch.long, device=self.device)
            .unsqueeze(0)
            .repeat(window_N, 1)
            .view(-1)
        )
        v2w_mask[in_map.long()] = True
        nempty_num = v2w_mask.view(-1, nW).sum(dim=-1)
        w_id = w_id[in_map.long()]
        w_w_id = w_w_id[in_map.long()]
        w_w_xyz = torch.stack(
            [
                w_w_id // window_size // window_size,
                w_w_id // window_size % window_size,
                w_w_id % window_size,
            ],
            dim=-1,
        )
        return w_w_id, w_w_xyz, nempty_num, sort_idx, inv_sort_idx

    def get_index01(self, sp, local_xyz, colors):
        """
        calculate the arguments for sparse attention
        """
        (
            w_w_id,
            w_w_xyz,
            nempty_num,
            n2n_indices,
            inv_sort_idx,
        ) = self.get_window_mapping(sp)
        local_xyz = local_xyz[n2n_indices]
        colors = colors[n2n_indices]
        # recover the relative pos in the voxel
        n_coords = w_w_xyz + local_xyz
        n_coords = torch.cat([n_coords, colors], dim=1)
        (
            x_offset,
            y_offset,
            m2w_indices,
            w_sizes,
            w2n_indices,
            w2m_indices,
        ) = sparse_self_attention(w_w_id, nempty_num, protocol="v2")
        return (
            x_offset,
            y_offset,
            m2w_indices,
            w_sizes,
            w2n_indices,
            n2n_indices,
            w2m_indices,
            n_coords,
        )

    def get_shifted_sp(self, sp):
        """
        get the shifted sparse tensor for shift-window
        """
        stride_in = sp.coordinate_map_key.get_tensor_stride()
        shift_size = self.shift_size * stride_in[0]
        shifted_C = sp.C.clone()
        shifted_C[:, 1:] += shift_size
        shifted_sp = SparseTensor(
            features=sp.F,
            coordinates=shifted_C,
            device=self.device,
            tensor_stride=stride_in,
        )
        return shifted_sp

    def get_window_pos(self, sp):
        stride_in = sp.coordinate_map_key.get_tensor_stride()
        return (sp.C[:, 1:] / stride_in[0]) % self.window_size

    def forward(self, sp, coords_sp):
        """
        xyz: position of point inside voxel
        colors: other signal for cRSE, include colors and normals
        local_xyz: relative position of point indide voxel(using for finer cRSE table)
        """
        colors = coords_sp.F[:, 4:]
        xyz = coords_sp.F[:, :4]
        local_xyz = (xyz - coords_sp.C)[
            :, 1:
        ] / coords_sp.coordinate_map_key.get_tensor_stride()[0]
        self.device = sp.device
        sp_shift = self.get_shifted_sp(sp)

        attn_args = self.get_index01(sp, local_xyz, colors)
        attn_args_shift = self.get_index01(sp_shift, local_xyz, colors)

        feats = sp.F
        for i, blk in enumerate(self.blocks):
            attn_args_blk = attn_args if i % 2 == 0 else attn_args_shift
            feats = blk(feats, attn_args_blk)  # [N, C]

        sp = assign_feats(sp, feats)
        if self.downsample is not None:
            sp_down, coords_sp = self.downsample(sp, coords_sp)
            return sp, sp_down, coords_sp
        else:
            return sp, sp, coords_sp

    def extra_repr(self) -> str:
        return f"window_size={self.window_size}, depth={self.depth}, channel={self.dim}, num_heads={self.num_heads}, quant_size={self.quant_size}, cRSE={self.cRSE}, fp16_mode={self.fp16_mode}"