zhangjunjun commited on
Commit
614e06a
·
1 Parent(s): 687193a

feat: pdf extract

Browse files
Files changed (1) hide show
  1. app.py +22 -55
app.py CHANGED
@@ -1,63 +1,30 @@
1
- import gradio as gr
2
- from huggingface_hub import InferenceClient
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
 
28
- response = ""
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
41
 
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
  )
 
60
 
 
 
 
61
 
62
- if __name__ == "__main__":
63
- demo.launch()
 
1
+ import requests
2
+ from PIL import Image
3
+ from transformers import AutoProcessor, AutoModelForCausalLM
4
 
5
+ model = AutoModelForCausalLM.from_pretrained(
6
+ "yifeihu/TFT-ID-1.0", trust_remote_code=True
7
+ )
8
+ processor = AutoProcessor.from_pretrained("yifeihu/TFT-ID-1.0", trust_remote_code=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
+ prompt = "<OD>"
11
 
12
+ url = "https://huggingface.co/yifeihu/TF-ID-base/resolve/main/arxiv_2305_10853_5.png?download=true"
13
+ image = Image.open(requests.get(url, stream=True).raw)
 
 
 
 
 
 
14
 
15
+ inputs = processor(text=prompt, images=image, return_tensors="pt")
 
16
 
17
+ generated_ids = model.generate(
18
+ input_ids=inputs["input_ids"],
19
+ pixel_values=inputs["pixel_values"],
20
+ max_new_tokens=1024,
21
+ do_sample=False,
22
+ num_beams=3,
 
 
 
 
 
 
 
 
 
 
 
23
  )
24
+ generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
25
 
26
+ parsed_answer = processor.post_process_generation(
27
+ generated_text, task="<OD>", image_size=(image.width, image.height)
28
+ )
29
 
30
+ print(parsed_answer)