Spaces:
Runtime error
Runtime error
zetavg
commited on
update
Browse files- app.py +1 -1
- llama_lora/lib/finetune.py +3 -4
- llama_lora/ui/finetune_ui.py +7 -7
- llama_lora/ui/inference_ui.py +8 -0
app.py
CHANGED
@@ -42,7 +42,7 @@ def main(
|
|
42 |
with gr.Blocks(title=get_page_title(), css=main_page_custom_css()) as demo:
|
43 |
main_page()
|
44 |
|
45 |
-
demo.queue().launch(server_name=server_name, share=share)
|
46 |
|
47 |
|
48 |
if __name__ == "__main__":
|
|
|
42 |
with gr.Blocks(title=get_page_title(), css=main_page_custom_css()) as demo:
|
43 |
main_page()
|
44 |
|
45 |
+
demo.queue(concurrency_count=2).launch(server_name=server_name, share=share)
|
46 |
|
47 |
|
48 |
if __name__ == "__main__":
|
llama_lora/lib/finetune.py
CHANGED
@@ -214,10 +214,9 @@ def train(
|
|
214 |
if torch.__version__ >= "2" and sys.platform != "win32":
|
215 |
model = torch.compile(model)
|
216 |
|
217 |
-
trainer.train(resume_from_checkpoint=resume_from_checkpoint)
|
218 |
|
219 |
model.save_pretrained(output_dir)
|
|
|
220 |
|
221 |
-
|
222 |
-
"\n If there's a warning about missing keys above, please disregard :)"
|
223 |
-
)
|
|
|
214 |
if torch.__version__ >= "2" and sys.platform != "win32":
|
215 |
model = torch.compile(model)
|
216 |
|
217 |
+
result = trainer.train(resume_from_checkpoint=resume_from_checkpoint)
|
218 |
|
219 |
model.save_pretrained(output_dir)
|
220 |
+
print(f"Model saved to {output_dir}.")
|
221 |
|
222 |
+
return result
|
|
|
|
llama_lora/ui/finetune_ui.py
CHANGED
@@ -360,7 +360,7 @@ Train data (first 10):
|
|
360 |
|
361 |
Global.should_stop_training = False
|
362 |
|
363 |
-
return Global.train_fn(
|
364 |
get_base_model(), # base_model
|
365 |
get_tokenizer(), # tokenizer
|
366 |
os.path.join(Global.data_dir, "lora_models",
|
@@ -529,19 +529,19 @@ def finetune_ui():
|
|
529 |
with gr.Row():
|
530 |
with gr.Column():
|
531 |
micro_batch_size = gr.Slider(
|
532 |
-
minimum=1, maximum=100,
|
533 |
label="Micro Batch Size",
|
534 |
info="The number of examples in each mini-batch for gradient computation. A smaller micro_batch_size reduces memory usage but may increase training time."
|
535 |
)
|
536 |
|
537 |
gradient_accumulation_steps = gr.Slider(
|
538 |
-
minimum=1, maximum=10,
|
539 |
label="Gradient Accumulation Steps",
|
540 |
info="The number of steps to accumulate gradients before updating model parameters. This can be used to simulate a larger effective batch size without increasing memory usage."
|
541 |
)
|
542 |
|
543 |
epochs = gr.Slider(
|
544 |
-
minimum=1, maximum=100, value=1,
|
545 |
label="Epochs",
|
546 |
info="The number of times to iterate over the entire training dataset. A larger number of epochs may improve model performance but also increase the risk of overfitting.")
|
547 |
|
@@ -553,19 +553,19 @@ def finetune_ui():
|
|
553 |
|
554 |
with gr.Column():
|
555 |
lora_r = gr.Slider(
|
556 |
-
minimum=1, maximum=16, value=8,
|
557 |
label="LoRA R",
|
558 |
info="The rank parameter for LoRA, which controls the dimensionality of the rank decomposition matrices. A larger lora_r increases the expressiveness and flexibility of LoRA but also increases the number of trainable parameters and memory usage."
|
559 |
)
|
560 |
|
561 |
lora_alpha = gr.Slider(
|
562 |
-
minimum=1, maximum=128, value=16,
|
563 |
label="LoRA Alpha",
|
564 |
info="The scaling parameter for LoRA, which controls how much LoRA affects the original pre-trained model weights. A larger lora_alpha amplifies the impact of LoRA but may also distort or override the pre-trained knowledge."
|
565 |
)
|
566 |
|
567 |
lora_dropout = gr.Slider(
|
568 |
-
minimum=0, maximum=1, value=0.
|
569 |
label="LoRA Dropout",
|
570 |
info="The dropout probability for LoRA, which controls the fraction of LoRA parameters that are set to zero during training. A larger lora_dropout increases the regularization effect of LoRA but also increases the risk of underfitting."
|
571 |
)
|
|
|
360 |
|
361 |
Global.should_stop_training = False
|
362 |
|
363 |
+
return "Done. " + Global.train_fn(
|
364 |
get_base_model(), # base_model
|
365 |
get_tokenizer(), # tokenizer
|
366 |
os.path.join(Global.data_dir, "lora_models",
|
|
|
529 |
with gr.Row():
|
530 |
with gr.Column():
|
531 |
micro_batch_size = gr.Slider(
|
532 |
+
minimum=1, maximum=100, step=1, value=4,
|
533 |
label="Micro Batch Size",
|
534 |
info="The number of examples in each mini-batch for gradient computation. A smaller micro_batch_size reduces memory usage but may increase training time."
|
535 |
)
|
536 |
|
537 |
gradient_accumulation_steps = gr.Slider(
|
538 |
+
minimum=1, maximum=10, step=1, value=32,
|
539 |
label="Gradient Accumulation Steps",
|
540 |
info="The number of steps to accumulate gradients before updating model parameters. This can be used to simulate a larger effective batch size without increasing memory usage."
|
541 |
)
|
542 |
|
543 |
epochs = gr.Slider(
|
544 |
+
minimum=1, maximum=100, step=1, value=1,
|
545 |
label="Epochs",
|
546 |
info="The number of times to iterate over the entire training dataset. A larger number of epochs may improve model performance but also increase the risk of overfitting.")
|
547 |
|
|
|
553 |
|
554 |
with gr.Column():
|
555 |
lora_r = gr.Slider(
|
556 |
+
minimum=1, maximum=16, step=1, value=8,
|
557 |
label="LoRA R",
|
558 |
info="The rank parameter for LoRA, which controls the dimensionality of the rank decomposition matrices. A larger lora_r increases the expressiveness and flexibility of LoRA but also increases the number of trainable parameters and memory usage."
|
559 |
)
|
560 |
|
561 |
lora_alpha = gr.Slider(
|
562 |
+
minimum=1, maximum=128, step=1, value=16,
|
563 |
label="LoRA Alpha",
|
564 |
info="The scaling parameter for LoRA, which controls how much LoRA affects the original pre-trained model weights. A larger lora_alpha amplifies the impact of LoRA but may also distort or override the pre-trained knowledge."
|
565 |
)
|
566 |
|
567 |
lora_dropout = gr.Slider(
|
568 |
+
minimum=0, maximum=1, value=0.05,
|
569 |
label="LoRA Dropout",
|
570 |
info="The dropout probability for LoRA, which controls the fraction of LoRA parameters that are set to zero during training. A larger lora_dropout increases the regularization effect of LoRA but also increases the risk of underfitting."
|
571 |
)
|
llama_lora/ui/inference_ui.py
CHANGED
@@ -335,6 +335,14 @@ def inference_ui():
|
|
335 |
// Add tooltips
|
336 |
setTimeout(function () {
|
337 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
338 |
tippy("#inference_prompt_template", {
|
339 |
placement: 'bottom-start',
|
340 |
delay: [500, 0],
|
|
|
335 |
// Add tooltips
|
336 |
setTimeout(function () {
|
337 |
|
338 |
+
tippy("#inference_lora_model", {
|
339 |
+
placement: 'bottom-start',
|
340 |
+
delay: [500, 0],
|
341 |
+
animation: 'scale-subtle',
|
342 |
+
content: 'Select a LoRA model form your data directory, or type in a model name on HF (e.g.: <code>tloen/alpaca-lora-7b</code>).',
|
343 |
+
allowHTML: true,
|
344 |
+
});
|
345 |
+
|
346 |
tippy("#inference_prompt_template", {
|
347 |
placement: 'bottom-start',
|
348 |
delay: [500, 0],
|