Spaces:
Runtime error
Runtime error
zetavg
commited on
Commit
·
4870204
1
Parent(s):
a5d7977
extract inference
Browse files
llama_lora/lib/inference.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import transformers
|
3 |
+
|
4 |
+
from .streaming_generation_utils import Iteratorize, Stream
|
5 |
+
|
6 |
+
|
7 |
+
def generate(
|
8 |
+
# model
|
9 |
+
model,
|
10 |
+
tokenizer,
|
11 |
+
# input
|
12 |
+
prompt,
|
13 |
+
generation_config,
|
14 |
+
max_new_tokens,
|
15 |
+
stopping_criteria=[],
|
16 |
+
# output options
|
17 |
+
stream_output=False
|
18 |
+
):
|
19 |
+
device = get_device()
|
20 |
+
|
21 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
22 |
+
input_ids = inputs["input_ids"].to(device)
|
23 |
+
generate_params = {
|
24 |
+
"input_ids": input_ids,
|
25 |
+
"generation_config": generation_config,
|
26 |
+
"return_dict_in_generate": True,
|
27 |
+
"output_scores": True,
|
28 |
+
"max_new_tokens": max_new_tokens,
|
29 |
+
"stopping_criteria": transformers.StoppingCriteriaList() + stopping_criteria
|
30 |
+
}
|
31 |
+
|
32 |
+
if stream_output:
|
33 |
+
# Stream the reply 1 token at a time.
|
34 |
+
# This is based on the trick of using 'stopping_criteria' to create an iterator,
|
35 |
+
# from https://github.com/oobabooga/text-generation-webui/blob/ad37f396fc8bcbab90e11ecf17c56c97bfbd4a9c/modules/text_generation.py#L216-L243.
|
36 |
+
|
37 |
+
def generate_with_callback(callback=None, **kwargs):
|
38 |
+
kwargs["stopping_criteria"].insert(
|
39 |
+
0,
|
40 |
+
Stream(callback_func=callback)
|
41 |
+
)
|
42 |
+
with torch.no_grad():
|
43 |
+
model.generate(**kwargs)
|
44 |
+
|
45 |
+
def generate_with_streaming(**kwargs):
|
46 |
+
return Iteratorize(
|
47 |
+
generate_with_callback, kwargs, callback=None
|
48 |
+
)
|
49 |
+
|
50 |
+
with generate_with_streaming(**generate_params) as generator:
|
51 |
+
for output in generator:
|
52 |
+
decoded_output = tokenizer.decode(output, skip_special_tokens=True)
|
53 |
+
yield decoded_output, output
|
54 |
+
if output[-1] in [tokenizer.eos_token_id]:
|
55 |
+
break
|
56 |
+
return # early return for stream_output
|
57 |
+
|
58 |
+
# Without streaming
|
59 |
+
with torch.no_grad():
|
60 |
+
generation_output = model.generate(**generate_params)
|
61 |
+
output = generation_output.sequences[0]
|
62 |
+
decoded_output = tokenizer.decode(output, skip_special_tokens=True)
|
63 |
+
yield decoded_output, output
|
64 |
+
return
|
65 |
+
|
66 |
+
|
67 |
+
def get_device():
|
68 |
+
if torch.cuda.is_available():
|
69 |
+
return "cuda"
|
70 |
+
else:
|
71 |
+
return "cpu"
|
72 |
+
|
73 |
+
try:
|
74 |
+
if torch.backends.mps.is_available():
|
75 |
+
return "mps"
|
76 |
+
except: # noqa: E722
|
77 |
+
pass
|
llama_lora/{utils/callbacks.py → lib/streaming_generation_utils.py}
RENAMED
File without changes
|
llama_lora/models.py
CHANGED
@@ -60,9 +60,10 @@ def get_new_base_model(base_model_name):
|
|
60 |
base_model_name, device_map={"": device}, low_cpu_mem_usage=True
|
61 |
)
|
62 |
|
63 |
-
|
64 |
-
model.config.
|
65 |
-
model.config.
|
|
|
66 |
|
67 |
return model
|
68 |
|
|
|
60 |
base_model_name, device_map={"": device}, low_cpu_mem_usage=True
|
61 |
)
|
62 |
|
63 |
+
tokenizer = get_tokenizer(base_model_name)
|
64 |
+
model.config.pad_token_id = tokenizer.pad_token_id = 0
|
65 |
+
model.config.bos_token_id = tokenizer.bos_token_id = 1
|
66 |
+
model.config.eos_token_id = tokenizer.eos_token_id = 2
|
67 |
|
68 |
return model
|
69 |
|
llama_lora/ui/inference_ui.py
CHANGED
@@ -8,12 +8,12 @@ from transformers import GenerationConfig
|
|
8 |
|
9 |
from ..globals import Global
|
10 |
from ..models import get_model, get_tokenizer, get_device
|
|
|
11 |
from ..utils.data import (
|
12 |
get_available_template_names,
|
13 |
get_available_lora_model_names,
|
14 |
get_info_of_available_lora_model)
|
15 |
from ..utils.prompter import Prompter
|
16 |
-
from ..utils.callbacks import Iteratorize, Stream
|
17 |
|
18 |
device = get_device()
|
19 |
|
@@ -103,8 +103,6 @@ def do_inference(
|
|
103 |
tokenizer = get_tokenizer(base_model_name)
|
104 |
model = get_model(base_model_name, lora_model_name)
|
105 |
|
106 |
-
inputs = tokenizer(prompt, return_tensors="pt")
|
107 |
-
input_ids = inputs["input_ids"].to(device)
|
108 |
generation_config = GenerationConfig(
|
109 |
temperature=temperature,
|
110 |
top_p=top_p,
|
@@ -113,26 +111,56 @@ def do_inference(
|
|
113 |
num_beams=num_beams,
|
114 |
)
|
115 |
|
116 |
-
generate_params = {
|
117 |
-
"input_ids": input_ids,
|
118 |
-
"generation_config": generation_config,
|
119 |
-
"return_dict_in_generate": True,
|
120 |
-
"output_scores": True,
|
121 |
-
"max_new_tokens": max_new_tokens,
|
122 |
-
}
|
123 |
-
|
124 |
def ui_generation_stopping_criteria(input_ids, score, **kwargs):
|
125 |
if Global.should_stop_generating:
|
126 |
return True
|
127 |
return False
|
128 |
|
129 |
Global.should_stop_generating = False
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
|
137 |
if stream_output:
|
138 |
# Stream the reply 1 token at a time.
|
|
|
8 |
|
9 |
from ..globals import Global
|
10 |
from ..models import get_model, get_tokenizer, get_device
|
11 |
+
from ..lib.inference import generate
|
12 |
from ..utils.data import (
|
13 |
get_available_template_names,
|
14 |
get_available_lora_model_names,
|
15 |
get_info_of_available_lora_model)
|
16 |
from ..utils.prompter import Prompter
|
|
|
17 |
|
18 |
device = get_device()
|
19 |
|
|
|
103 |
tokenizer = get_tokenizer(base_model_name)
|
104 |
model = get_model(base_model_name, lora_model_name)
|
105 |
|
|
|
|
|
106 |
generation_config = GenerationConfig(
|
107 |
temperature=temperature,
|
108 |
top_p=top_p,
|
|
|
111 |
num_beams=num_beams,
|
112 |
)
|
113 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
def ui_generation_stopping_criteria(input_ids, score, **kwargs):
|
115 |
if Global.should_stop_generating:
|
116 |
return True
|
117 |
return False
|
118 |
|
119 |
Global.should_stop_generating = False
|
120 |
+
|
121 |
+
generation_args = {
|
122 |
+
'model': model,
|
123 |
+
'tokenizer': tokenizer,
|
124 |
+
'prompt': prompt,
|
125 |
+
'generation_config': generation_config,
|
126 |
+
'max_new_tokens': max_new_tokens,
|
127 |
+
'stopping_criteria': [ui_generation_stopping_criteria],
|
128 |
+
'stream_output': stream_output
|
129 |
+
}
|
130 |
+
|
131 |
+
for (decoded_output, output) in generate(**generation_args):
|
132 |
+
raw_output_str = None
|
133 |
+
if show_raw:
|
134 |
+
raw_output_str = str(output)
|
135 |
+
response = prompter.get_response(decoded_output)
|
136 |
+
|
137 |
+
if Global.should_stop_generating:
|
138 |
+
return
|
139 |
+
|
140 |
+
yield (
|
141 |
+
gr.Textbox.update(
|
142 |
+
value=response, lines=inference_output_lines),
|
143 |
+
raw_output_str)
|
144 |
+
|
145 |
+
if Global.should_stop_generating:
|
146 |
+
# If the user stops the generation, and then clicks the
|
147 |
+
# generation button again, they may mysteriously landed
|
148 |
+
# here, in the previous, should-be-stopped generation
|
149 |
+
# function call, with the new generation function not be
|
150 |
+
# called at all. To workaround this, we yield a message
|
151 |
+
# and setting lines=1, and if the front-end JS detects
|
152 |
+
# that lines has been set to 1 (rows="1" in HTML),
|
153 |
+
# it will automatically click the generate button again
|
154 |
+
# (gr.Textbox.update() does not support updating
|
155 |
+
# elem_classes or elem_id).
|
156 |
+
# [WORKAROUND-UI01]
|
157 |
+
yield (
|
158 |
+
gr.Textbox.update(
|
159 |
+
value="Please retry", lines=1),
|
160 |
+
None)
|
161 |
+
|
162 |
+
return
|
163 |
+
|
164 |
|
165 |
if stream_output:
|
166 |
# Stream the reply 1 token at a time.
|