zetavg commited on
Commit
116804a
·
unverified ·
1 Parent(s): 320751d
llama_lora/ui/finetune_ui.py CHANGED
@@ -334,15 +334,30 @@ Train data (first 10):
334
  time.sleep(2)
335
  return message
336
 
 
 
337
  class UiTrainerCallback(TrainerCallback):
338
  def _on_progress(self, args, state, control):
 
 
339
  if Global.should_stop_training:
340
  control.should_training_stop = True
341
  total_steps = (
342
  state.max_steps if state.max_steps is not None else state.num_train_epochs * state.steps_per_epoch)
 
 
 
 
 
 
 
 
 
 
 
343
  progress(
344
  (state.global_step, total_steps),
345
- desc=f"Training... (Epoch {math.ceil(state.epoch)}/{epochs}, Step {state.global_step}/{total_steps})"
346
  )
347
 
348
  def on_epoch_begin(self, args, state, control, **kwargs):
@@ -382,7 +397,12 @@ Train data (first 10):
382
  None, # resume_from_checkpoint
383
  training_callbacks # callbacks
384
  )
385
- return "Done: " + str(results)
 
 
 
 
 
386
 
387
  except Exception as e:
388
  raise gr.Error(e)
@@ -582,7 +602,7 @@ def finetune_ui():
582
 
583
  with gr.Column():
584
  model_name = gr.Textbox(
585
- lines=1, label="LoRA Model Name", value=random_name(),
586
  elem_id="finetune_model_name",
587
  )
588
 
 
334
  time.sleep(2)
335
  return message
336
 
337
+ log_history = []
338
+
339
  class UiTrainerCallback(TrainerCallback):
340
  def _on_progress(self, args, state, control):
341
+ nonlocal log_history
342
+
343
  if Global.should_stop_training:
344
  control.should_training_stop = True
345
  total_steps = (
346
  state.max_steps if state.max_steps is not None else state.num_train_epochs * state.steps_per_epoch)
347
+ log_history = state.log_history
348
+ last_history = None
349
+ last_loss = None
350
+ if len(log_history) > 0:
351
+ last_history = log_history[-1]
352
+ last_loss = last_history.get('loss', None)
353
+
354
+ progress_detail = f"Epoch {math.ceil(state.epoch)}/{epochs}"
355
+ if last_loss is not None:
356
+ progress_detail += f", Loss: {last_loss:.4f}"
357
+
358
  progress(
359
  (state.global_step, total_steps),
360
+ desc=f"Training... ({progress_detail})"
361
  )
362
 
363
  def on_epoch_begin(self, args, state, control, **kwargs):
 
397
  None, # resume_from_checkpoint
398
  training_callbacks # callbacks
399
  )
400
+
401
+ logs_str = "\n".join([json.dumps(log) for log in log_history]) or "None"
402
+
403
+ result_message = f"Training ended:\n{str(results)}\n\nLogs:\n{logs_str}"
404
+ print(result_message)
405
+ return result_message
406
 
407
  except Exception as e:
408
  raise gr.Error(e)
 
602
 
603
  with gr.Column():
604
  model_name = gr.Textbox(
605
+ lines=1, label="LoRA Model Name", value=random_name,
606
  elem_id="finetune_model_name",
607
  )
608
 
llama_lora/ui/main_page.py CHANGED
@@ -109,6 +109,12 @@ def main_page_custom_css():
109
  font-weight: 100;
110
  }
111
 
 
 
 
 
 
 
112
  .error-message, .error-message p {
113
  color: var(--error-text-color) !important;
114
  }
@@ -161,12 +167,14 @@ def main_page_custom_css():
161
  }
162
 
163
  .inference_options_group {
164
- margin-top: -12px;
 
165
  }
166
  .inference_options_group > .form {
167
  border-radius: 0;
168
  border-left: 0;
169
  border-right: 0;
 
170
  box-shadow: none;
171
  }
172
 
@@ -395,10 +403,22 @@ def main_page_custom_css():
395
  }
396
  }
397
 
 
398
  #tokenizer_encoded_tokens_input_textbox .codemirror-wrapper,
399
  #tokenizer_decoded_text_input_textbox .codemirror-wrapper {
400
  margin-bottom: -20px;
401
  }
 
 
 
 
 
 
 
 
 
 
 
402
 
403
  .foot_stop_timeoutable_btn {
404
  align-self: flex-end;
 
109
  font-weight: 100;
110
  }
111
 
112
+ /*
113
+ .codemirror-wrapper .cm-editor .cm-gutters {
114
+ background-color: var(--background-fill-secondary);
115
+ }
116
+ */
117
+
118
  .error-message, .error-message p {
119
  color: var(--error-text-color) !important;
120
  }
 
167
  }
168
 
169
  .inference_options_group {
170
+ margin-top: -16px;
171
+ margin-bottom: -16px;
172
  }
173
  .inference_options_group > .form {
174
  border-radius: 0;
175
  border-left: 0;
176
  border-right: 0;
177
+ border-bottom: 0;
178
  box-shadow: none;
179
  }
180
 
 
403
  }
404
  }
405
 
406
+ /*
407
  #tokenizer_encoded_tokens_input_textbox .codemirror-wrapper,
408
  #tokenizer_decoded_text_input_textbox .codemirror-wrapper {
409
  margin-bottom: -20px;
410
  }
411
+ */
412
+ #tokenizer_encoded_tokens_input_textbox,
413
+ #tokenizer_decoded_text_input_textbox {
414
+ overflow: hidden !important;
415
+ }
416
+
417
+ /* in case if there's too many logs on the previous run and made the box too high */
418
+ #finetune_training_status:has(.wrap:not(.hide)) {
419
+ max-height: 160px;
420
+ height: 160px;
421
+ }
422
 
423
  .foot_stop_timeoutable_btn {
424
  align-self: flex-end;
llama_lora/ui/tokenizer_ui.py CHANGED
@@ -66,12 +66,12 @@ def tokenizer_ui():
66
  things_that_might_timeout.append(decoding)
67
  things_that_might_timeout.append(encoding)
68
 
69
- stop_timeoutable_btn = gr.Button(
70
- "stop not-responding elements",
71
- elem_id="inference_stop_timeoutable_btn",
72
- elem_classes="foot_stop_timeoutable_btn")
73
- stop_timeoutable_btn.click(
74
- fn=None, inputs=None, outputs=None, cancels=things_that_might_timeout)
75
 
76
  tokenizer_ui_blocks.load(_js="""
77
  function tokenizer_ui_blocks_js() {
 
66
  things_that_might_timeout.append(decoding)
67
  things_that_might_timeout.append(encoding)
68
 
69
+ stop_timeoutable_btn = gr.Button(
70
+ "stop not-responding elements",
71
+ elem_id="inference_stop_timeoutable_btn",
72
+ elem_classes="foot_stop_timeoutable_btn")
73
+ stop_timeoutable_btn.click(
74
+ fn=None, inputs=None, outputs=None, cancels=things_that_might_timeout)
75
 
76
  tokenizer_ui_blocks.load(_js="""
77
  function tokenizer_ui_blocks_js() {
llama_lora/utils/prompter.py CHANGED
@@ -48,7 +48,8 @@ class Prompter(object):
48
  elif "variables" in self.template:
49
  variable_names = self.template.get("variables")
50
  if type(variables) == dict:
51
- variables = [variables.get(name, None) for name in variable_names]
 
52
  if "default" not in self.template:
53
  raise ValueError(
54
  f"The template {self.template_name} has \"variables\" defined but does not has a default prompt defined. Please do it like: '\"default\": \"prompt_with_instruction\"' to handle cases when a matching prompt can't be found.")
@@ -91,7 +92,9 @@ class Prompter(object):
91
  def get_response(self, output: str) -> str:
92
  if self.template_name == "None":
93
  return output
94
- return output.split(self.template["response_split"])[1].strip()
 
 
95
 
96
  def get_variable_names(self) -> List[str]:
97
  if self.template_name == "None":
 
48
  elif "variables" in self.template:
49
  variable_names = self.template.get("variables")
50
  if type(variables) == dict:
51
+ variables = [variables.get(name, None)
52
+ for name in variable_names]
53
  if "default" not in self.template:
54
  raise ValueError(
55
  f"The template {self.template_name} has \"variables\" defined but does not has a default prompt defined. Please do it like: '\"default\": \"prompt_with_instruction\"' to handle cases when a matching prompt can't be found.")
 
92
  def get_response(self, output: str) -> str:
93
  if self.template_name == "None":
94
  return output
95
+ return self.template["response_split"].join(
96
+ output.split(self.template["response_split"])[1:]
97
+ ).strip()
98
 
99
  def get_variable_names(self) -> List[str]:
100
  if self.template_name == "None":