zetavg
extract and fix get_device
570c043
raw
history blame
5.45 kB
import os
import sys
import gc
import json
import torch
from transformers import LlamaForCausalLM, LlamaTokenizer
from peft import PeftModel
from .globals import Global
from .lib.get_device import get_device
def get_new_base_model(base_model_name):
if Global.ui_dev_mode:
return
if Global.new_base_model_that_is_ready_to_be_used:
if Global.name_of_new_base_model_that_is_ready_to_be_used == base_model_name:
model = Global.new_base_model_that_is_ready_to_be_used
Global.new_base_model_that_is_ready_to_be_used = None
Global.name_of_new_base_model_that_is_ready_to_be_used = None
return model
else:
Global.new_base_model_that_is_ready_to_be_used = None
Global.name_of_new_base_model_that_is_ready_to_be_used = None
clear_cache()
device = get_device()
if device == "cuda":
model = LlamaForCausalLM.from_pretrained(
base_model_name,
load_in_8bit=Global.load_8bit,
torch_dtype=torch.float16,
# device_map="auto",
# ? https://github.com/tloen/alpaca-lora/issues/21
device_map={'': 0},
)
elif device == "mps":
model = LlamaForCausalLM.from_pretrained(
base_model_name,
device_map={"": device},
torch_dtype=torch.float16,
)
else:
model = LlamaForCausalLM.from_pretrained(
base_model_name, device_map={"": device}, low_cpu_mem_usage=True
)
tokenizer = get_tokenizer(base_model_name)
model.config.pad_token_id = tokenizer.pad_token_id = 0
model.config.bos_token_id = tokenizer.bos_token_id = 1
model.config.eos_token_id = tokenizer.eos_token_id = 2
return model
def get_tokenizer(base_model_name):
if Global.ui_dev_mode:
return
loaded_tokenizer = Global.loaded_tokenizers.get(base_model_name)
if loaded_tokenizer:
return loaded_tokenizer
tokenizer = LlamaTokenizer.from_pretrained(base_model_name)
Global.loaded_tokenizers.set(base_model_name, tokenizer)
return tokenizer
def get_model(
base_model_name,
peft_model_name=None):
if Global.ui_dev_mode:
return
if peft_model_name == "None":
peft_model_name = None
model_key = base_model_name
if peft_model_name:
model_key = f"{base_model_name}//{peft_model_name}"
loaded_model = Global.loaded_models.get(model_key)
if loaded_model:
return loaded_model
peft_model_name_or_path = peft_model_name
if peft_model_name:
lora_models_directory_path = os.path.join(Global.data_dir, "lora_models")
possible_lora_model_path = os.path.join(
lora_models_directory_path, peft_model_name)
if os.path.isdir(possible_lora_model_path):
peft_model_name_or_path = possible_lora_model_path
possible_model_info_json_path = os.path.join(possible_lora_model_path, "info.json")
if os.path.isfile(possible_model_info_json_path):
try:
with open(possible_model_info_json_path, "r") as file:
json_data = json.load(file)
possible_hf_model_name = json_data.get("hf_model_name")
if possible_hf_model_name and json_data.get("load_from_hf"):
peft_model_name_or_path = possible_hf_model_name
except Exception as e:
raise ValueError("Error reading model info from {possible_model_info_json_path}: {e}")
Global.loaded_models.prepare_to_set()
clear_cache()
model = get_new_base_model(base_model_name)
if peft_model_name:
device = get_device()
if device == "cuda":
model = PeftModel.from_pretrained(
model,
peft_model_name_or_path,
torch_dtype=torch.float16,
# ? https://github.com/tloen/alpaca-lora/issues/21
device_map={'': 0},
)
elif device == "mps":
model = PeftModel.from_pretrained(
model,
peft_model_name_or_path,
device_map={"": device},
torch_dtype=torch.float16,
)
else:
model = PeftModel.from_pretrained(
model,
peft_model_name_or_path,
device_map={"": device},
)
model.config.pad_token_id = get_tokenizer(base_model_name).pad_token_id = 0
model.config.bos_token_id = 1
model.config.eos_token_id = 2
if not Global.load_8bit:
model.half() # seems to fix bugs for some users.
model.eval()
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
Global.loaded_models.set(model_key, model)
clear_cache()
return model
def prepare_base_model(base_model_name=Global.default_base_model_name):
Global.new_base_model_that_is_ready_to_be_used = get_new_base_model(base_model_name)
Global.name_of_new_base_model_that_is_ready_to_be_used = base_model_name
def clear_cache():
gc.collect()
# if not shared.args.cpu: # will not be running on CPUs anyway
with torch.no_grad():
torch.cuda.empty_cache()
def unload_models():
Global.loaded_models.clear()
Global.loaded_tokenizers.clear()
clear_cache()