from transformers import pipeline import gradio as gr import time pipe_fine = pipeline(model="zeihers-mart/whisper-small-swedish-basic", device_map="auto") pipe_raw = pipeline(model="openai/whisper-small", device_map="auto") sa = pipeline('sentiment-analysis', model='marma/bert-base-swedish-cased-sentiment') # force swedish pipe_fine.model.config.forced_decoder_ids = ( pipe_fine.tokenizer.get_decoder_prompt_ids( language="sv", task="transcribe" ) ) pipe_raw.model.config.forced_decoder_ids = ( pipe_raw.tokenizer.get_decoder_prompt_ids( language="sv", task="transcribe" ) ) def transcribe(audio): start = time.time() text_sv = pipe_fine(audio)["text"] time_fine = time.time() - start print(f"Fine-tuned: audio transcribed in {time_fine} seconds: {text_sv}") start = time.time() text_raw= pipe_raw(audio)["text"] time_raw = time.time() - start print(f"Raw: audio transcribed in {time_raw} seconds: {text_raw}") sentiment= sa(text_sv) print(f"Sentiment result: {sentiment}") sentiment= sentiment[0]["label"] happy_path = "https://upload.wikimedia.org/wikipedia/commons/thumb/e/e0/SNice.svg/1200px-SNice.svg.png" sad_path = "https://upload.wikimedia.org/wikipedia/commons/thumb/4/42/Sad_smiley_yellow_simple.svg/240px-Sad_smiley_yellow_simple.svg.png" path = happy_path if sentiment == "POSITIVE" or sad_path description = f"The fine-tuned model took {time_fine} seconds while the original Whisper model took {time_raw} seconds.\nThe sentiment was evaluated from the fine-tuned model transcription as {sentiment.lower()}." return text_sv, text_raw, path, description iface = gr.Interface( fn=transcribe, inputs=gr.Audio(sources=["microphone"], type="filepath"), outputs=[gr.Textbox(label="Fine-tuned transcription"), gr.Textbox(label="Whisper transcription"), gr.Image(label="Sentiment from Fine-tuned transcription", width=250, height=250), gr.Textbox(label="Description")], title="Finetuned Whisper Swedish Small", description="Realtime demo for Swedish speech recognition using a fine-tuned Whisper small model.", ) iface.launch()