lab2 / app.py
fabianzeiher's picture
added new smiley links
adbbe3a
raw
history blame
2.19 kB
from transformers import pipeline
import gradio as gr
import time
pipe_fine = pipeline(model="zeihers-mart/whisper-small-swedish-basic", device_map="auto")
pipe_raw = pipeline(model="openai/whisper-small", device_map="auto")
sa = pipeline('sentiment-analysis', model='marma/bert-base-swedish-cased-sentiment')
# force swedish
pipe_fine.model.config.forced_decoder_ids = (
pipe_fine.tokenizer.get_decoder_prompt_ids(
language="sv", task="transcribe"
)
)
pipe_raw.model.config.forced_decoder_ids = (
pipe_raw.tokenizer.get_decoder_prompt_ids(
language="sv", task="transcribe"
)
)
def transcribe(audio):
start = time.time()
text_sv = pipe_fine(audio)["text"]
time_fine = time.time() - start
print(f"Fine-tuned: audio transcribed in {time_fine} seconds: {text_sv}")
start = time.time()
text_raw= pipe_raw(audio)["text"]
time_raw = time.time() - start
print(f"Raw: audio transcribed in {time_raw} seconds: {text_raw}")
sentiment= sa(text_sv)
print(f"Sentiment result: {sentiment}")
sentiment= sentiment[0]["label"]
happy_path = "https://upload.wikimedia.org/wikipedia/commons/thumb/7/79/Face-smile.svg/480px-Face-smile.svg.png"
sad_path = "https://upload.wikimedia.org/wikipedia/commons/thumb/0/06/Face-sad.svg/480px-Face-sad.svg.png"
path = happy_path if sentiment == "POSITIVE" else sad_path
description = f"The fine-tuned model took {time_fine} seconds while the original Whisper model took {time_raw} seconds.\nThe sentiment was evaluated from the fine-tuned model transcription as {sentiment.lower()}."
return text_sv, text_raw, path, description
iface = gr.Interface(
fn=transcribe,
inputs=gr.Audio(sources=["microphone"], type="filepath"),
outputs=[gr.Textbox(label="Fine-tuned transcription"),
gr.Textbox(label="Whisper transcription"),
gr.Image(label="Sentiment from Fine-tuned transcription", width=250, height=250),
gr.Textbox(label="Description")],
title="Finetuned Whisper Swedish Small",
description="Realtime demo for Swedish speech recognition using a fine-tuned Whisper small model.",
)
iface.launch()