Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,9 @@
|
|
1 |
import gradio as gr
|
2 |
from colpali_engine.models import ColQwen2, ColQwen2Processor
|
3 |
import torch
|
4 |
-
import base64
|
5 |
from PIL import Image
|
6 |
-
import io
|
7 |
import logging
|
|
|
8 |
|
9 |
# Setup logging
|
10 |
logging.basicConfig(level=logging.INFO)
|
@@ -13,25 +12,37 @@ logger = logging.getLogger("colqwen-api")
|
|
13 |
# Initialize model
|
14 |
logger.info("Loading ColQwen2 model...")
|
15 |
model = ColQwen2.from_pretrained(
|
16 |
-
"vidore/colqwen2-
|
17 |
torch_dtype=torch.bfloat16,
|
18 |
device_map="auto",
|
19 |
)
|
20 |
-
processor = ColQwen2Processor.from_pretrained("vidore/colqwen2-
|
21 |
model = model.eval()
|
22 |
logger.info("Model loaded successfully")
|
23 |
|
24 |
-
def process_image(
|
25 |
try:
|
26 |
logger.info("Processing image")
|
27 |
-
|
28 |
-
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
33 |
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
except Exception as e:
|
36 |
logger.error(f"Error: {str(e)}", exc_info=True)
|
37 |
raise
|
@@ -40,8 +51,9 @@ interface = gr.Interface(
|
|
40 |
fn=process_image,
|
41 |
inputs=gr.Image(),
|
42 |
outputs="json",
|
43 |
-
title="ColQwen2 Embedding API"
|
|
|
44 |
)
|
45 |
|
46 |
-
#
|
47 |
-
interface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from colpali_engine.models import ColQwen2, ColQwen2Processor
|
3 |
import torch
|
|
|
4 |
from PIL import Image
|
|
|
5 |
import logging
|
6 |
+
import numpy as np
|
7 |
|
8 |
# Setup logging
|
9 |
logging.basicConfig(level=logging.INFO)
|
|
|
12 |
# Initialize model
|
13 |
logger.info("Loading ColQwen2 model...")
|
14 |
model = ColQwen2.from_pretrained(
|
15 |
+
"vidore/colqwen2-v1.0", # Updated to v1.0
|
16 |
torch_dtype=torch.bfloat16,
|
17 |
device_map="auto",
|
18 |
)
|
19 |
+
processor = ColQwen2Processor.from_pretrained("vidore/colqwen2-v1.0")
|
20 |
model = model.eval()
|
21 |
logger.info("Model loaded successfully")
|
22 |
|
23 |
+
def process_image(image):
|
24 |
try:
|
25 |
logger.info("Processing image")
|
26 |
+
# Convert to PIL Image if needed
|
27 |
+
if not isinstance(image, Image.Image):
|
28 |
+
image = Image.fromarray(image)
|
29 |
|
30 |
+
# Process image
|
31 |
+
inputs = processor(
|
32 |
+
images=image,
|
33 |
+
return_tensors="pt"
|
34 |
+
).to(model.device)
|
35 |
|
36 |
+
logger.info("Generating embeddings")
|
37 |
+
with torch.no_grad():
|
38 |
+
outputs = model(**inputs)
|
39 |
+
embeddings = outputs.last_hidden_state.mean(dim=1).cpu().numpy()
|
40 |
+
|
41 |
+
logger.info(f"Embeddings shape: {embeddings.shape}")
|
42 |
+
return {
|
43 |
+
"embeddings": embeddings.tolist(),
|
44 |
+
"shape": embeddings.shape
|
45 |
+
}
|
46 |
except Exception as e:
|
47 |
logger.error(f"Error: {str(e)}", exc_info=True)
|
48 |
raise
|
|
|
51 |
fn=process_image,
|
52 |
inputs=gr.Image(),
|
53 |
outputs="json",
|
54 |
+
title="ColQwen2 Embedding API",
|
55 |
+
description="Generate embeddings from images using ColQwen2"
|
56 |
)
|
57 |
|
58 |
+
# Launch with API
|
59 |
+
interface.launch(server_name="0.0.0.0", server_port=7861)
|