Spaces:
Running
Running
File size: 38,059 Bytes
dbdd71f 45b7f9a dbdd71f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 |
import copy
import io
import random
import subprocess
import threading
import time
from glob import glob
from pathlib import Path
import gradio as gr
import matplotlib.pyplot as plt
import numpy
import requests
from PIL import Image
from scipy import stats
from server import *
from tqdm import tqdm
from utils import *
from concrete.ml.deployment import FHEModelClient
CURRENT_DIR = Path(__file__).parent
subprocess.Popen(["uvicorn", "server:app"], cwd=CURRENT_DIR)
time.sleep(3)
numpy.set_printoptions(threshold=numpy.inf)
USER_ID = numpy.random.randint(0, 2**32)
# Define client-specific directories
CLIENT_DIR = ROOT_DIR / f"user_{USER_ID}/client"
CLIENT_KEY_SMOOTHER_MODULE_DIR = CLIENT_DIR / KEY_SMOOTHER_MODULE_DIR
CLIENT_KEY_BASE_MODULE_DIR = CLIENT_DIR / KEY_BASE_MODULE_DIR
CLIENT_ENCRYPTED_INPUT_DIR = CLIENT_DIR / ENCRYPTED_INPUT_DIR
CLIENT_ENCRYPTED_OUTPUT_DIR = CLIENT_DIR / ENCRYPTED_OUTPUT_DIR
# Define server-specific directories
SERVER_DIR = ROOT_DIR / f"user_{USER_ID}/server"
SERVER_KEY_SMOOTHER_MODULE_DIR = SERVER_DIR / KEY_SMOOTHER_MODULE_DIR
SERVER_KEY_BASE_MODULE_DIR = SERVER_DIR / KEY_BASE_MODULE_DIR
SERVER_ENCRYPTED_INPUT_DIR = SERVER_DIR / ENCRYPTED_INPUT_DIR
SERVER_ENCRYPTED_OUTPUT_DIR = SERVER_DIR / ENCRYPTED_OUTPUT_DIR
ALL_DIRECTORIES = [
CLIENT_KEY_SMOOTHER_MODULE_DIR,
CLIENT_KEY_BASE_MODULE_DIR,
CLIENT_ENCRYPTED_INPUT_DIR,
CLIENT_ENCRYPTED_OUTPUT_DIR,
SERVER_KEY_SMOOTHER_MODULE_DIR,
SERVER_KEY_BASE_MODULE_DIR,
SERVER_ENCRYPTED_INPUT_DIR,
SERVER_ENCRYPTED_OUTPUT_DIR,
]
# Load test dataset
print("Load data ...")
UNIQUE_FOUNDERS = load_pickle_from_zip("data/unique_founders.pkl")
OTHER_TEST_FOUNDERS = load_pickle_from_zip("data/hf_test_founders.pkl")
OTHER_TRAIN_FOUNDERS = load_pickle_from_zip("data/hf_train_founders.pkl")
UNIQUE_MIXED_FOUNDERS = load_pickle_from_zip("data/unique_mixed_founders.pkl")
DESCENDANT_PATH = Path("./data/Child.pkl")
PREDICTION_IMG_PATH = Path("output.npg")
FAMILY_TREE_IMG_PATH = Path("simulated_family_tree.png")
ALL_GENERATED_PATHS = [
DESCENDANT_PATH,
FAMILY_TREE_IMG_PATH,
PREDICTION_IMG_PATH,
FHE_COMPUTATION_TIMELINE,
]
def reset():
"""Reset the environment.
Clean the root directory, recreating necessary directories and removing any generated files.
"""
print("Cleaning ...")
clean_dir(ROOT_DIR)
for directory in ALL_DIRECTORIES:
directory.mkdir(parents=True, exist_ok=True)
for file_path in ALL_GENERATED_PATHS:
if file_path.exists():
file_path.unlink()
print(f"File: {file_path} has been removed.")
def simulate_allele_fn():
yield {
simulate_btn: gr.update(visible=True, value="π Processing... Please wait."),
ethnicity_simulation_img: gr.update(visible=False),
simulate_text: gr.update(visible=False),
}
start_time = time.time()
n_generations = random.randint(1, 3)
individuals = random.sample(UNIQUE_MIXED_FOUNDERS, 2 + n_generations)
num_snps = META["C"]
print(f"Simulating family tree with: {n_generations} generations ...")
first_founder = individuals.pop(0)
second_founder = individuals.pop(0)
assert len(first_founder) == 4
assert len(second_founder) == 4
assert (
sum([numpy.array_equal(arr1, arr2) for arr1, arr2 in zip(first_founder, second_founder)])
== 0
)
lineages = []
labels = []
admix = []
for gen in range(n_generations + 1):
print(f"Generation_{gen}:")
# Initialize the child for this generation
if gen == 0:
# Use the specified founders for the first generation
founder_1 = first_founder
founder_2 = second_founder
labels.append(["Ancestor 1", "Ancestor 2", "Progeny (Generation 1)"])
else:
# Use the last child from the previous generation as founder 1
founder_1 = admix[-1]
founder_2 = individuals.pop(0)
labels.append(
[labels[-1][-1], f"Ancestor {len(labels) + 2}", f"Progeny (Generation {gen + 1})"]
)
assert len(founder_1) == 4
assert len(founder_2) == 4
# Prepare new admix entry for this generation's child
admix.append([None, None, None, None])
snp_1, snp_2, label_1, label_2 = copy.deepcopy(founder_1)
_snp_1, _snp_2, _label_1, _label_2 = copy.deepcopy(founder_2)
lineage = []
for j in range(2): # Two haplotypes
# Select one haplotype from each founder
snp, label = (snp_1, label_1) if random.random() < 0.5 else (snp_2, label_2)
_snp, _label = (_snp_1, _label_1) if random.random() < 0.5 else (_snp_2, _label_2)
lineage.append(
[compute_distribution(label.flatten()), compute_distribution(_label.flatten())]
)
breakpoints = numpy.random.choice(
range(1, num_snps),
# size=int(sum(numpy.random.poisson(0.75, size=gen))) + 1,
size=int(sum(numpy.random.poisson(0.1, size=gen)))
+ 1, # Fewer breakpoints, less mixed
replace=False,
)
breakpoints = numpy.concatenate(([0], numpy.sort(breakpoints), [num_snps]))
for k in range(len(breakpoints) - 1):
snp[breakpoints[k] : breakpoints[k + 1]] = _snp[
breakpoints[k] : breakpoints[k + 1]
].copy()
label[breakpoints[k] : breakpoints[k + 1]] = _label[
breakpoints[k] : breakpoints[k + 1]
].copy()
yield {
simulate_btn: gr.update(
visible=True,
value=f"β³ Time elapsed: {time.time() - start_time:.0f} seconds ({(gen + 1)/(n_generations + 1):.0%})",
)
}
admix[-1][j], admix[-1][j + 2] = snp, label
lineages.append([(lineage[0][0] + lineage[1][0]) / 2, (lineage[0][1] + lineage[1][1]) / 2])
print(f"Ascendant_1: {lineages[-1][0]} + Ascendant_2 {lineages[-1][0]}")
last_child = admix[-1]
snp_1, snp_2, label_1, label_2 = last_child[0], last_child[1], last_child[2], last_child[3]
snp, label_full = (snp_1, label_1) if random.random() < 0.5 else (snp_2, label_2)
# We are prediction on one allele, so we plot the right allele
lineages[-1][-1] = compute_distribution(label_full)
l1 = label_full.reshape(1, -1)
N, L = l1.shape
y = l1[:, 0 : L // META["M"] * META["M"]].reshape(N, L // META["M"], META["M"])
y = stats.mode(y, axis=2)[0].squeeze()
write_pickle(path="./data/Child.pkl", data=[snp.reshape(1, -1), y])
snp = numpy.array(snp).reshape(1, -1)
yield {
simulate_btn: gr.update(
visible=True,
value=f"β³ Time elapsed: {time.time() - start_time:.0f} seconds ({(gen + 1)/(n_generations + 1):.0%})",
)
}
print("Plot the simulated allele.")
print(f"{snp.shape=} - {y.shape=}")
print(
f"{any(snp.flatten()[12343 : 12343 + 1000] == 1)=} - {any(snp.flatten()[12343 : 12343 + 1000] == 0)=}"
)
yield {
simulate_btn: gr.update(
visible=True,
value=f"β³ Time elapsed: {time.time() - start_time:.0f} seconds ({(gen + 1)/(n_generations + 1):.0%})",
)
}
_ = pie_ethnicity_simulation_plot_img(copy.copy(lineages), copy.copy(labels))
sorted_indices = numpy.argsort(lineages[-1][0])[::-1][:2]
top_percentages = [lineages[-1][0][i] for i in sorted_indices]
top_labels = [LABELS[i] for i in sorted_indices]
# items = [f'{p:.0%} {l}' for p, l in zip(top_percentages, top_labels)]
# items = [f'{p:.0%} {l}' for p, l in zip(lineages[-1][0], LABELS)]
yield {
simulate_btn: gr.update(
visible=True,
value=f"β³ Time elapsed: {time.time() - start_time:.0f} seconds ({(gen + 1)/(n_generations + 1):.0%})",
)
}
yield {
clear_input_box: gr.update(visible=True, value=list(snp.flatten())[:321]),
simulate_btn: gr.update(value="Data simulated β
"),
ethnicity_simulation_img: gr.update(
value=Image.open(FAMILY_TREE_IMG_PATH),
visible=True,
show_label=False,
show_download_button=True,
container=True,
),
simulate_text: gr.update(
value=f"Given the genetic lineage simulation above, the origin of two predominant genes, for the last progeny are: {top_labels[-2]} and {top_labels[-1]}. Now, we proceed with ***DNA testing*** using **FHE** on this final descendant.",
visible=True,
),
}
return
def key_gen_fn(user_id):
"""Generate keys for a given user on the Client Side."""
print("\n------------ Step 1: Key Generation:")
yield gr.update(visible=True, value="π Processing... Please wait.")
print(f"Your user ID is: {user_id:.0f}....")
## Generate one key for all models since they share the same crypto params
# Stage1: Base modules
base_modules_path = sorted(glob(f"{SHARED_BASE_MODULE_DIR}/model_*"), key=extract_model_number)
print(f"{len(base_modules_path)=} {META['NW']=}")
if len(base_modules_path) != META["NW"]:
yield gr.update(visible=True, value="β Error in key generation", interactive=False)
base_client = FHEModelClient(path_dir=base_modules_path[0], key_dir=CLIENT_KEY_BASE_MODULE_DIR)
base_client.generate_private_and_evaluation_keys()
serialized_evaluation_base_modules_keys = base_client.get_serialized_evaluation_keys()
assert isinstance(serialized_evaluation_base_modules_keys, bytes)
print(f"Stage1: {len(glob(f'{CLIENT_KEY_BASE_MODULE_DIR}/eval_key'))} key has been generated")
# Stage2: Smoother module
smoother_client = FHEModelClient(
path_dir=SHARED_SMOOTHER_MODULE_DIR, key_dir=CLIENT_KEY_SMOOTHER_MODULE_DIR
)
smoother_client.generate_private_and_evaluation_keys()
serialized_evaluation_smoother_module_keys = smoother_client.get_serialized_evaluation_keys()
assert isinstance(serialized_evaluation_smoother_module_keys, bytes)
print(
f"Stage2: {len(glob(f'{CLIENT_KEY_SMOOTHER_MODULE_DIR}/eval_key'))} key has been generated"
)
# Save the keys
base_evaluation_key_path = Path(base_client.key_dir) / "eval_key"
smoother_evaluation_key_path = Path(smoother_client.key_dir) / "eval_key"
write_bytes(base_evaluation_key_path, serialized_evaluation_base_modules_keys)
write_bytes(smoother_evaluation_key_path, serialized_evaluation_smoother_module_keys)
if not base_evaluation_key_path.is_file():
msg = "β Error encountered while generating the base modules key evaluation"
elif not smoother_evaluation_key_path.is_file():
msg = "β Error encountered while generating the smoother module key evaluation"
else:
msg = "Secret and public keys have been generated β
"
print(msg)
yield gr.update(visible=True, value=msg, interactive=False)
return
def encrypt_fn(user_id):
"""Encrypt input on the Client Side using the secret key."""
print("\n------------ Step 2: Encrypt the input")
if (
is_none(int(user_id))
or (len(glob(f"{CLIENT_KEY_BASE_MODULE_DIR}/*")) == 0)
or not DESCENDANT_PATH.is_file()
):
print("Error in encryption step: Provide your chromosome and generate the evaluation keys.")
yield {
encrypt_btn: gr.update(
visible=True,
value="β Ensure your have simulated an allele and the evaluation key has been generated.",
)
}
return
allele, _ = read_pickle(path=DESCENDANT_PATH)
yield {
encrypt_btn: gr.update(visible=True, value="π Processing... Please wait."),
send_btn: gr.update(interactive=False),
run_fhe_btn: gr.update(interactive=False),
get_output_btn: gr.update(interactive=False),
decrypt_btn: gr.update(interactive=False),
simulate_btn: gr.update(interactive=False),
}
base_modules_path = sorted(glob(f"{SHARED_BASE_MODULE_DIR}/model_*"), key=extract_model_number)
assert len(base_modules_path) == META["NW"]
print(f"{len(base_modules_path)} models have been loaded")
client_fhemodels = []
for i, base_module_path in enumerate(tqdm(base_modules_path)):
base_client = FHEModelClient(path_dir=base_module_path, key_dir=CLIENT_KEY_BASE_MODULE_DIR)
client_fhemodels.append(base_client)
base_serialized_evaluation_keys = read_bytes(base_client.key_dir / "eval_key")
assert isinstance(base_serialized_evaluation_keys, bytes)
X_p, _, M_, rem = process_data_for_base_modules(META, allele)
base_args = tuple(zip(client_fhemodels[:-1], numpy.swapaxes(X_p, 0, 1)))
base_args += ((client_fhemodels[-1], allele[:, allele.shape[1] - (M_ + rem) :]),)
start_time = time.time()
for i, (client, window) in enumerate(base_args):
encrypted_input = client.quantize_encrypt_serialize(window)
write_bytes(CLIENT_ENCRYPTED_INPUT_DIR / f"window_{i}", encrypted_input)
yield {
encrypt_btn: gr.update(
visible=True,
value=f"β³ Time elapsed: {time.time() - start_time:.0f} seconds ({i/META['NW']:.0%}).",
)
}
# f"β³ Time elapsed: {time.time() - start_time:.0f} seconds ({(gen + 1)/(n_generations + 1):.0%})")
exec_time = time.time() - start_time
msg = f"Encryption completed in {exec_time: .2f} seconds."
print(msg)
enc_quant_input_shorten_hex = encrypted_input.hex()[:INPUT_BROWSER_LIMIT]
yield {
encrypt_input_box: gr.update(visible=True, value=enc_quant_input_shorten_hex),
encrypt_btn: gr.update(interactive=False, value=msg),
simulate_btn: gr.update(interactive=False),
send_btn: gr.update(interactive=True),
run_fhe_btn: gr.update(interactive=True),
get_output_btn: gr.update(interactive=True),
decrypt_btn: gr.update(interactive=True),
}
return
def send_input_fn(user_id):
"""Send the encrypted data and the evaluation key to the server."""
print("\n------------ Step 3.1: Send encrypted_data to the Server")
errors = []
if not (CLIENT_KEY_BASE_MODULE_DIR / "eval_key").is_file():
errors.append("Stage 1 evaluation keys are missing.")
if not (CLIENT_KEY_SMOOTHER_MODULE_DIR / "eval_key").is_file():
errors.append("Stage 2 evaluation keys are missing. ")
if len(glob(str(CLIENT_ENCRYPTED_INPUT_DIR / "window_*"))) != META["NW"]:
errors.append("The input has not been successfully encrypted.")
if errors:
error_message = "β Error during data transmission:\n" + "\n".join(errors)
print(error_message)
yield {send_btn: gr.update(value=error_message)}
return
yield {
send_btn: gr.update(value="π Processing... Please wait."),
run_fhe_btn: gr.update(interactive=False),
get_output_btn: gr.update(interactive=False),
decrypt_btn: gr.update(interactive=False),
}
# Define the data and files to post
data = {"user_id": f"user_{user_id:.0f}", "root_dir": str(ROOT_DIR)}
n_w = glob(f"{CLIENT_ENCRYPTED_INPUT_DIR}/window_*")
files = [
("files", open(f"{CLIENT_KEY_BASE_MODULE_DIR}/eval_key", "rb")),
("files", open(f"{CLIENT_KEY_SMOOTHER_MODULE_DIR}/eval_key", "rb")),
] + [("files", open(f"{CLIENT_ENCRYPTED_INPUT_DIR}/window_{i}", "rb")) for i in range(len(n_w))]
# Send the encrypted input and evaluation key to the server
url = SERVER_URL + "send_input"
print(f"{url=}")
with requests.post(url=url, data=data, files=files) as resp:
print(f"{resp.ok=}")
msg = "Data sent to the Server β
" if resp.ok else "β Error in sending data to the Server"
yield {
send_btn: gr.update(value=msg, interactive=False if "β
" in msg else True),
run_fhe_btn: gr.update(interactive=True),
get_output_btn: gr.update(interactive=True),
decrypt_btn: gr.update(interactive=True),
}
return
def run_fhe_fn(user_id):
"""Run the FHE execution on the Server Side."""
print("\n------------ Step 4.1: Run in FHE on the Server Side")
if FHE_COMPUTATION_TIMELINE.exists():
FHE_COMPUTATION_TIMELINE.unlink()
print(f"File {FHE_COMPUTATION_TIMELINE} removed successfully.")
if is_none(int(user_id)) or len(glob(f"{SERVER_ENCRYPTED_INPUT_DIR}/encrypted_window_*")) == 0:
yield {
run_fhe_btn: gr.update(
visible=True,
value="β Check your connectivity. Ensure the input has been submitted, the keys have been generated, and the server has received the data.",
)
}
return
yield {
run_fhe_btn: gr.update(
visible=True, value="π Processing... Please wait. This may take up to 500 seconds."
),
get_output_btn: gr.update(interactive=False),
decrypt_btn: gr.update(interactive=False),
}
data = {
"user_id": f"user_{user_id:.0f}",
"root_dir": str(ROOT_DIR),
}
url = SERVER_URL + "run_fhe"
# Function to run FHE on the server in a separate thread
def run_fhe_on_server():
nonlocal server_response
with requests.post(url=url, data=data) as resp:
if not resp.ok:
server_response = "error"
else:
server_response = resp.json()
server_response = None
# Start the FHE process in a separate thread
server_thread = threading.Thread(target=run_fhe_on_server)
server_thread.start()
# While the server is processing, check the timing file for updates
while server_thread.is_alive():
try:
with FHE_COMPUTATION_TIMELINE.open("r", encoding="utf-8") as f:
timing = f.read().strip()
yield {
run_fhe_btn: gr.update(visible=True, value=f"β³ Time elapsed: {timing}"),
}
except FileNotFoundError:
yield {
run_fhe_btn: gr.update(visible=True, value="β³ Waiting for the server to start..."),
}
time.sleep(5) # Wait a few seconds before reading again
# Wait for the thread to finish
server_thread.join()
# Handle server response after completion
if server_response == "error":
yield {
run_fhe_btn: gr.update(
visible=True,
value="β Error occurred on the Server Side. Please check your connectivity.",
),
}
else:
final_time = server_response
yield {
run_fhe_btn: gr.update(
visible=True, interactive=False, value=f"FHE executed in {final_time:.2f} seconds"
),
get_output_btn: gr.update(interactive=True),
decrypt_btn: gr.update(interactive=True),
}
def get_output_fn(user_id):
"""Retreive the encrypted data from the server."""
print("\n------------ Step 5.1: Get output")
if is_none(int(user_id)) or len(glob(f"{SERVER_ENCRYPTED_INPUT_DIR}/encrypted_window_*")) == 0:
msg = "β Error during data transmission: The server did not receive the data, so the FHE process could not be performed."
print(msg)
yield {get_output_btn: gr.update(visible=True, value=msg)}
return
yield {
get_output_btn: gr.update(value="π Processing... Please wait."),
decrypt_btn: gr.update(interactive=False),
}
data = {
"user_id": f"user_{user_id:.0f}",
"root_dir": str(ROOT_DIR),
}
# Retrieve the encrypted output
url = SERVER_URL + "get_output"
print(f"{url=}")
with requests.post(url=url, data=data) as response:
if response.ok:
msg = (
"Data sent to the Client β
"
if response.ok
else "β Error in receiving data from the server"
)
yhat_encrypted = load_pickle_from_zip(CLIENT_ENCRYPTED_OUTPUT_DIR / "encrypted_final_output.pkl")
assert len(yhat_encrypted) == META["NW"]
yield {
get_output_btn: gr.update(value=msg, interactive=False if "β
" in msg else True),
decrypt_btn: gr.update(interactive=True),
}
return
def decrypt_fn(user_id):
"""Dencrypt the data on the Client Side."""
print("\n------------ Step 6: Decrypt output")
if (
is_none(int(user_id))
or not (CLIENT_ENCRYPTED_OUTPUT_DIR / "encrypted_final_output.pkl").is_file()
):
print("Error in decryption step: Please run the FHE execution, first.")
yield {
decrypt_btn: gr.update(
visible=True,
value="β Ensure the input is precessed and retrieved from the server",
),
}
return
yield {decrypt_btn: gr.update(visible=True, value="π Processing... Please wait.")}
yhat_encrypted = load_pickle_from_zip(CLIENT_ENCRYPTED_OUTPUT_DIR / "encrypted_final_output.pkl")
# Retrieve the client API
client = FHEModelClient(path_dir=SHARED_SMOOTHER_MODULE_DIR, key_dir=SHARED_SMOOTHER_MODULE_DIR)
client.load()
yhat = []
for encrypted_i in yhat_encrypted:
# Deserialize, decrypt and post-process the encrypted output
output = client.deserialize_decrypt_dequantize(encrypted_i)
y_pred = numpy.argmax(output, axis=-1)[0]
yhat.append(y_pred)
yhat = numpy.array(yhat)
proportion = compute_distribution(yhat.flatten())
_ = pie_output_plot_img(copy.copy(proportion))
yield {
decrypt_btn: gr.update(value="Output decrypted β
", interactive=False),
pie_plot_output: gr.update(
value=Image.open(PREDICTION_IMG_PATH),
visible=True,
show_label=False,
show_download_button=False,
container=False,
),
user_id_btn: gr.update(value=None),
}
return
def create_pie_chart(ax, data, title, highlight=False, largest_piece=False, simulation=True):
sorted_indices = numpy.argsort(data)[::-1]
if data[sorted_indices[0]] == 1:
sorted_indices = [sorted_indices[0]]
sorted_data = data[sorted_indices]
sorted_labels = [LABELS[i] for i in sorted_indices]
sorted_colors = [COLORS[i] for i in sorted_indices]
## Keep only the 2 biggest parts
if simulation and not data[sorted_indices[0]] == 1:
top_data = sorted_data[:2] # First two largest proportions
others_data = sorted_data[2:].sum() # Sum of the rest
sorted_data = numpy.concatenate([top_data, [others_data]]) # Include "others"
sorted_labels = sorted_labels[:2] + ["Others"] # First two labels + "Others"
sorted_colors = sorted_colors[:2] + ["#D3D3D3"] # Gray color for "Others"
if highlight:
explode = [0.15 for _ in range(len(sorted_data))]
else:
explode = [0.09 if i == 0 else 0 for i in range(len(sorted_data))]
wedges, _, _ = ax.pie(
sorted_data,
labels=sorted_labels,
colors=sorted_colors,
autopct=lambda x: f"{round(x)}%",
pctdistance=0.7,
labeldistance=1.1,
shadow=True,
explode=explode,
radius=1.9 if highlight else 1.0,
)
if largest_piece:
# Highlight the largest wedge with a black edge
wedges[0].set_edgecolor("black")
wedges[0].set_linewidth(2)
ax.set_title(title, fontsize=10, weight="bold")
if highlight:
for wedge in wedges:
wedge.set_edgecolor("black")
wedge.set_linewidth(3)
ax.set_title(title, fontsize=14, weight="bold")
ax.axis("equal") # Ensure the pie chart is drawn as a circle
def pie_ethnicity_simulation_plot_img(lineages, labels):
"""Generates a pie chart for genetic lineage simulation across multiple generations."""
n_generations = len(lineages) - 1
fig, axes = plt.subplots(n_generations, 3, figsize=(10, 4 * n_generations))
fig.suptitle("Genetic Lineage Simulator", fontsize=16, weight="bold", x=1)
for gen in range(n_generations):
parent1, parent2 = lineages.pop(0)
descendant = lineages[0][0]
label = labels.pop(0)
print(f"Generation {gen}: Parent 1: {parent1} + Parent 2 {parent2} = Child {descendant}")
ax_gen = axes[gen] if n_generations > 1 else axes
create_pie_chart(ax_gen[0], parent1, label[0])
create_pie_chart(ax_gen[1], parent2, label[1])
# Check if it's the last descendant, highlight it
is_last = gen == n_generations - 1
create_pie_chart(
ax_gen[2],
descendant,
f"Last progeny (Generation {n_generations + 1})" if is_last else label[2],
highlight=is_last,
)
plt.subplots_adjust(right=2)
plt.savefig(FAMILY_TREE_IMG_PATH, format="png", bbox_inches="tight")
buf = io.BytesIO()
plt.savefig(buf, format="png")
buf.seek(0)
plt.close(fig)
return Image.open(buf)
def pie_output_plot_img(data, simulation=False):
"""Generates a pie chart based on the ethnic proportions."""
fig, ax = plt.subplots(figsize=(10, 8))
create_pie_chart(
ax,
data,
"Predicted ethnicity distribution using FHE",
highlight=True,
largest_piece=True,
simulation=simulation,
)
plt.savefig(PREDICTION_IMG_PATH, format="png", bbox_inches="tight")
buf = io.BytesIO()
plt.savefig(buf, format="png")
buf.seek(0)
plt.close(fig) # Close the plot to free memory
return Image.open(buf)
CSS = """
#accordion-label { /* Custom styling for the Accordion title */
background-color: #f0f0f0 !important; /* Set the background color to gray */
}
#ie_plot_output { /* Target the image output container */
align-items: center;
justify-content: center;
margin: auto; /* Ensure it is centered */
}
"""
if __name__ == "__main__":
print("Starting demo ...")
print(META)
reset()
with gr.Blocks(css=CSS) as demo:
gr.Markdown()
gr.Markdown(
"""
<p align="center">
<img width=200 src="https://user-images.githubusercontent.com/5758427/197816413-d9cddad3-ba38-4793-847d-120975e1da11.png">
</p>
"""
)
gr.Markdown()
gr.Markdown(
"""<h2 align="center">Encrypted DNA Testing Using Fully Homomorphic Encryption</h2>"""
)
gr.Markdown()
gr.Markdown(
"""
<p align="center">
<a href="https://github.com/zama-ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197972109-faaaff3e-10e2-4ab6-80f5-7531f7cfb08f.png">Concrete-ML</a>
β
<a href="https://docs.zama.ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197976802-fddd34c5-f59a-48d0-9bff-7ad1b00cb1fb.png">Documentation</a>
β
<a href="https://zama.ai/community"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197977153-8c9c01a7-451a-4993-8e10-5a6ed5343d02.png">Community</a>
β
<a href="https://twitter.com/zama_fhe"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197975044-bab9d199-e120-433b-b3be-abd73b211a54.png">@zama_fhe</a>
</p>
"""
)
gr.Markdown()
gr.Markdown(
"""
<p align='center'> DNA testing platforms analyze your genetic data in the clear, leaving it vulnerable to hacks. With Fully Homomorphic Encryption (FHE), they could perform this analysis on encrypted data, ensuring your sensitive information remains safe, even during processing, allowing to get the knowledge without the risks.</p>
<p align='center'> In this demo, we show you how to perform encrypted DNA analysis using FHE and Zama's Concrete ML <a href='https://github.com/zama-ai/concrete-ml' target=library</a>library</p>
"""
)
gr.Markdown()
gr.Markdown(
"""
<p align="center">
<img width="75%" height="30%" src="https://raw.githubusercontent.com/kcelia/Img/main/dna_banner.png">
</p>
"""
)
with gr.Accordion("How does it work?", elem_id="accordion-label", open=False):
gr.Markdown(
"""
**In FHE, two special keys are created to make secure, private DNA analysis possible:**
- Secret key (your personal lock and key): This is like your own unique lock and key. You use it to encrypt (lock up) your DNA
data so that no one else can read it. You also use it to decrypt (unlock) the results after they've been processed.
- Evaluation key (a safe tool for the DNA company): This is a special key you provide to the DNA analysis company. It allows
them to perform their analyses on your encrypted DNA data without decrypting it. Think of it as giving them specialized tools
that let them work on your locked box without needing to open it.
**How it works:**
1. You encrypt your DNA data: Using your secret key, you lock up your DNA information so it's unreadable to anyone else.
2. You send the encrypted DNA data and evaluation key to the DNA company: The company receives your encrypted DNA data
along with the evaluation key. They can't see your actual genetic information because it's securely locked.
3. The DNA company processes data without seeing it: Using the evaluation key, the company runs their genetic analysis
algorithms on your encrypted data. They might assess health risks, ancestry information, or genetic traitsβall without ever
unlocking your DNA data.
4. You decrypt the results: After processing, the company sends back the encrypted results of their analysis. You use your
secret key to decrypt and view the findings.
**In simple terms:**
FHE allows you to get your DNA analyzed without the DNA company ever seeing your actual genetic code. You keep your DNA
data securely locked with your secret key and give the company a special tool (the evaluation key) that lets them perform the
analysis without unlocking your data. This way, you receive personalized genetic insights while keeping your most sensitive
information private.
"""
)
gr.Markdown("<hr />")
gr.Markdown("# Step 1: Generate Genetic Lineage Simulator")
gr.Markdown(
"""
To start this demo, the simulation randomly picks *N* individuals over *G* generations, from a genetic dataset.
Each individual is represented by two alleles from chromosome *22*, which is particularly relevent for tracing human evolutionary history and migration patterns across the world. By analyzing specific markers known as Single Nucleotide Polymorphisms (SNPs) at key positions on this chromosome, valuable insights can be gained.
Each ancestor transmits half of their genetic material, with *50%* of our genes coming from the mother and *50%* from the father.
These genes are organized into pairs of alleles, one from each parent.
A gene can be dominant, meaning it is expressed and determines a visible trait, or recessive, remaining unexpressed but still present in the genome.
A recessive allele may manifest in future generations if both parents pass it on.
Five distinct genetic populations will be used in this simulation: **Americas, African, European, East Asian** and **South Asian**.
If you're curious to learn more about this simulation algorithm, you can refer to the code [here](https://github.com/Soptq/encDNA).
"""
)
simulate_btn = gr.Button("Generate a random genetic allele", elem_id="input-box")
ethnicity_simulation_img = gr.Image(
visible=False,
container=False,
show_download_button=False,
mirror_webcam=False,
elem_id="img",
)
gr.Markdown(
"""
The percentages you see above represent the two predominant genes transmitted to a progeny. Whether they are expressed or not is beyond the scope of this demo.
Below is the vector representing the allele, generated above.
"""
)
clear_input_box = gr.Textbox(label="Unencrypted Allele:", visible=True)
gr.Markdown(
"""
In practice, each individual is represented as a binary vector of size **1,059,079**,
where each value corresponds to a genetic variation at a specific position on the chromosome: 1 represents the presence of a particular SNP, while 0 indicates its absence.
"""
)
simulate_text = gr.Markdown(visible=False)
gr.Markdown("# Step 2: Encrypt the DNA on the Client Side")
gr.Markdown(
"""
β οΈ Important note: Encrypting an allele with more than a million values in FHE may take some time.
"""
)
gen_key_btn = gr.Button("Generate the secret and public keys")
user_id_btn = gr.Number(value=USER_ID, visible=False)
# gr.HTML("<div style='height: 24px;'></div>")
encrypt_btn = gr.Button("Encrypt the data using the secret key")
encrypt_input_box = gr.Textbox(label="Encrypted Allele:", max_lines=15, visible=True)
send_btn = gr.Button("Send data to the server")
gr.Markdown("<hr />")
gr.Markdown("# Step 3: FHE Computation on the Server Side ")
gr.Markdown(
"""
β οΈ Important note: Processing such a large input in FHE may take some time, potentially up to 5 minutes for one allele of size *1,059,079*.
To learn more about the selected ML model, check out this detailed [blog post](https://www.zama.ai/post/build-an-end-to-end-encrypted-23andme-genetic-testing-application-using-concrete-ml-fully-homomorphic-encryption).
"""
)
run_fhe_btn = gr.Button("Run FHE on the server")
get_output_btn = gr.Button("Send data to the client")
gr.Markdown("<hr />")
gr.Markdown("# Step 4: Decrypt the Result on the Client Side")
decrypt_btn = gr.Button("Decrypt the data using the secret key")
pie_plot_output = gr.Image(
visible=False,
height=600,
width=600,
container=False,
show_download_button=False,
mirror_webcam=False,
elem_id="ie_plot_output",
)
gr.Markdown(
"""
With FHE, the entire process remains encrypted end-to-end. Hence, you do not have to worry about data misuse, unauthorized analysis on your DNA, or data leaks.
Using FHE, privacy is guaranteed, and trusting the server is no longer a concern.
""",
visible=False,
)
gr.Markdown("<hr />")
gr.Markdown(
"""
The app was built with [Concrete ML](https://github.com/zama-ai/concrete-ml), a Privacy-Preserving Machine Learning (PPML) open-source set of tools by Zama.
Try it yourself and don't forget to star on [Github](https://github.com/zama-ai/concrete-ml) β.
"""
)
gr.Markdown()
gr.Markdown(
"""
**Note that:** This space and the results produced by this simulation are for educational and illustrative purposes only.
They are not intended to provide actual genetic analysis or be used as a substitute for a professional genetic testing.
"""
)
############################################################################# Click buttons
simulate_btn.click(
fn=simulate_allele_fn,
outputs=[clear_input_box, ethnicity_simulation_img, simulate_btn, simulate_text],
)
gen_key_btn.click(
key_gen_fn,
inputs=[user_id_btn],
outputs=[gen_key_btn],
)
encrypt_btn.click(
fn=encrypt_fn,
inputs=[user_id_btn],
outputs=[
encrypt_btn,
encrypt_input_box,
simulate_btn,
send_btn,
run_fhe_btn,
get_output_btn,
decrypt_btn,
],
)
send_btn.click(
fn=send_input_fn,
inputs=[user_id_btn],
outputs=[send_btn, run_fhe_btn, get_output_btn, decrypt_btn],
)
run_fhe_btn.click(
fn=run_fhe_fn, inputs=[user_id_btn], outputs=[run_fhe_btn, get_output_btn, decrypt_btn]
)
get_output_btn.click(
fn=get_output_fn, inputs=[user_id_btn], outputs=[get_output_btn, decrypt_btn]
)
decrypt_btn.click(
fn=decrypt_fn, inputs=[user_id_btn], outputs=[decrypt_btn, pie_plot_output, user_id_btn]
)
demo.queue()
demo.launch()
|