import gradio as gr from transformers import pipeline import numpy as np import os auth_token = os.environ.get("TOKEN") or True transcriber = pipeline("automatic-speech-recognition", model="zagibest/whisper-medium-5", token=auth_token) def transcribe(audio): sr, y = audio y = y.astype(np.float32) y /= np.max(np.abs(y)) return transcriber({"sampling_rate": sr, "raw": y})["text"] demo = gr.Interface( transcribe, gr.Audio(sources=["microphone", "upload"]), "text", ) demo.launch()