yzy0713's picture
Add files
6a05036
from .network import U2NET
import os
from PIL import Image
import numpy as np
import torch
import torch.nn.functional as F
import torchvision.transforms as transforms
from collections import OrderedDict
def load_checkpoint(model, checkpoint_path):
if not os.path.exists(checkpoint_path):
print("----No checkpoints at given path----")
return
model_state_dict = torch.load(checkpoint_path, map_location=torch.device("cpu"))
new_state_dict = OrderedDict()
for k, v in model_state_dict.items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
model.load_state_dict(new_state_dict)
print("----checkpoints loaded from path: {}----".format(checkpoint_path))
return model
class Normalize_image(object):
"""Normalize given tensor into given mean and standard dev
Args:
mean (float): Desired mean to substract from tensors
std (float): Desired std to divide from tensors
"""
def __init__(self, mean, std):
assert isinstance(mean, (float))
if isinstance(mean, float):
self.mean = mean
if isinstance(std, float):
self.std = std
self.normalize_1 = transforms.Normalize(self.mean, self.std)
self.normalize_3 = transforms.Normalize([self.mean] * 3, [self.std] * 3)
self.normalize_18 = transforms.Normalize([self.mean] * 18, [self.std] * 18)
def __call__(self, image_tensor):
if image_tensor.shape[0] == 1:
return self.normalize_1(image_tensor)
elif image_tensor.shape[0] == 3:
return self.normalize_3(image_tensor)
elif image_tensor.shape[0] == 18:
return self.normalize_18(image_tensor)
else:
assert "Please set proper channels! Normlization implemented only for 1, 3 and 18"
def apply_transform(img):
transforms_list = []
transforms_list += [transforms.ToTensor()]
transforms_list += [Normalize_image(0.5, 0.5)]
transform_rgb = transforms.Compose(transforms_list)
return transform_rgb(img)
def generate_mask(input_image, net, device='cpu'):
img = input_image
img_size = img.size
img = img.resize((768, 768), Image.BICUBIC)
image_tensor = apply_transform(img)
image_tensor = torch.unsqueeze(image_tensor, 0)
with torch.no_grad():
output_tensor = net(image_tensor.to(device))
output_tensor = F.log_softmax(output_tensor[0], dim=1)
output_tensor = torch.max(output_tensor, dim=1, keepdim=True)[1]
output_tensor = torch.squeeze(output_tensor, dim=0)
output_arr = output_tensor.cpu().numpy()
mask = (output_arr != 0).astype(np.uint8) * 255
mask = mask[0] # Selecting the first channel to make it 2D
alpha_mask_img = Image.fromarray(mask, mode='L')
alpha_mask_img = alpha_mask_img.resize(img_size, Image.BICUBIC)
return alpha_mask_img
def load_seg_model(checkpoint_path, device='cpu'):
net = U2NET(in_ch=3, out_ch=4)
net = load_checkpoint(net, checkpoint_path)
net = net.to(device)
net = net.eval()
return net