import os import re import json import httpx import base64 import urllib.parse from models import RequestModel from utils import c35s, c3s, c3o, c3h, gem, BaseAPI, get_model_dict, provider_api_circular_list import imghdr def encode_image(image_path): with open(image_path, "rb") as image_file: file_content = image_file.read() file_type = imghdr.what(None, file_content) base64_encoded = base64.b64encode(file_content).decode('utf-8') if file_type == 'png': return f"data:image/png;base64,{base64_encoded}" elif file_type in ['jpeg', 'jpg']: return f"data:image/jpeg;base64,{base64_encoded}" else: raise ValueError(f"不支持的图片格式: {file_type}") async def get_doc_from_url(url): filename = urllib.parse.unquote(url.split("/")[-1]) transport = httpx.AsyncHTTPTransport( http2=True, verify=False, retries=1 ) async with httpx.AsyncClient(transport=transport) as client: try: response = await client.get( url, timeout=30.0 ) with open(filename, 'wb') as f: f.write(response.content) except httpx.RequestError as e: print(f"An error occurred while requesting {e.request.url!r}.") return filename async def get_encode_image(image_url): filename = await get_doc_from_url(image_url) image_path = os.getcwd() + "/" + filename base64_image = encode_image(image_path) os.remove(image_path) return base64_image # from PIL import Image # import io # def validate_image(image_data, image_type): # try: # decoded_image = base64.b64decode(image_data) # image = Image.open(io.BytesIO(decoded_image)) # # 检查图片格式是否与声明的类型匹配 # # print("image.format", image.format) # if image_type == "image/png" and image.format != "PNG": # raise ValueError("Image is not a valid PNG") # elif image_type == "image/jpeg" and image.format not in ["JPEG", "JPG"]: # raise ValueError("Image is not a valid JPEG") # # 如果没有异常,则图片有效 # return True # except Exception as e: # print(f"Image validation failed: {str(e)}") # return False async def get_image_message(base64_image, engine = None): if base64_image.startswith("http"): base64_image = await get_encode_image(base64_image) colon_index = base64_image.index(":") semicolon_index = base64_image.index(";") image_type = base64_image[colon_index + 1:semicolon_index] if "gpt" == engine: return { "type": "image_url", "image_url": { "url": base64_image, } } if "claude" == engine or "vertex-claude" == engine: # if not validate_image(base64_image.split(",")[1], image_type): # raise ValueError(f"Invalid image format. Expected {image_type}") return { "type": "image", "source": { "type": "base64", "media_type": image_type, "data": base64_image.split(",")[1], } } if "gemini" == engine or "vertex-gemini" == engine: return { "inlineData": { "mimeType": image_type, "data": base64_image.split(",")[1], } } raise ValueError("Unknown engine") async def get_text_message(role, message, engine = None): if "gpt" == engine or "claude" == engine or "openrouter" == engine or "vertex-claude" == engine or "o1" == engine: return {"type": "text", "text": message} if "gemini" == engine or "vertex-gemini" == engine: return {"text": message} if engine == "cloudflare": return message if engine == "cohere": return message raise ValueError("Unknown engine") async def get_gemini_payload(request, engine, provider): headers = { 'Content-Type': 'application/json' } model_dict = get_model_dict(provider) model = model_dict[request.model] gemini_stream = "streamGenerateContent" url = provider['base_url'] if url.endswith("v1beta"): url = "https://generativelanguage.googleapis.com/v1beta/models/{model}:{stream}?key={api_key}".format(model=model, stream=gemini_stream, api_key=await provider_api_circular_list[provider['provider']].next(model)) if url.endswith("v1"): url = "https://generativelanguage.googleapis.com/v1/models/{model}:{stream}?key={api_key}".format(model=model, stream=gemini_stream, api_key=await provider_api_circular_list[provider['provider']].next(model)) messages = [] systemInstruction = None function_arguments = None for msg in request.messages: if msg.role == "assistant": msg.role = "model" tool_calls = None if isinstance(msg.content, list): content = [] for item in msg.content: if item.type == "text": text_message = await get_text_message(msg.role, item.text, engine) content.append(text_message) elif item.type == "image_url" and provider.get("image", True): image_message = await get_image_message(item.image_url.url, engine) content.append(image_message) else: content = [{"text": msg.content}] tool_calls = msg.tool_calls if tool_calls: tool_call = tool_calls[0] function_arguments = { "functionCall": { "name": tool_call.function.name, "args": json.loads(tool_call.function.arguments) } } messages.append( { "role": "model", "parts": [function_arguments] } ) elif msg.role == "tool": function_call_name = function_arguments["functionCall"]["name"] messages.append( { "role": "function", "parts": [{ "functionResponse": { "name": function_call_name, "response": { "name": function_call_name, "content": { "result": msg.content, } } } }] } ) elif msg.role != "system": messages.append({"role": msg.role, "parts": content}) elif msg.role == "system": content[0]["text"] = re.sub(r"_+", "_", content[0]["text"]) systemInstruction = {"parts": content} payload = { "contents": messages, "safetySettings": [ { "category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_NONE" }, { "category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_NONE" }, { "category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_NONE" }, { "category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "BLOCK_NONE" } ] } if systemInstruction: payload["systemInstruction"] = systemInstruction miss_fields = [ 'model', 'messages', 'stream', 'tool_choice', 'temperature', 'top_p', 'max_tokens', 'presence_penalty', 'frequency_penalty', 'n', 'user', 'include_usage', 'logprobs', 'top_logprobs' ] for field, value in request.model_dump(exclude_unset=True).items(): if field not in miss_fields and value is not None: if field == "tools": payload.update({ "tools": [{ "function_declarations": [tool["function"] for tool in value] }], "tool_config": { "function_calling_config": { "mode": "AUTO" } } }) else: payload[field] = value return url, headers, payload import time from cryptography.hazmat.primitives import hashes from cryptography.hazmat.primitives.asymmetric import padding from cryptography.hazmat.primitives.serialization import load_pem_private_key def create_jwt(client_email, private_key): # JWT Header header = json.dumps({ "alg": "RS256", "typ": "JWT" }).encode() # JWT Payload now = int(time.time()) payload = json.dumps({ "iss": client_email, "scope": "https://www.googleapis.com/auth/cloud-platform", "aud": "https://oauth2.googleapis.com/token", "exp": now + 3600, "iat": now }).encode() # Encode header and payload segments = [ base64.urlsafe_b64encode(header).rstrip(b'='), base64.urlsafe_b64encode(payload).rstrip(b'=') ] # Create signature signing_input = b'.'.join(segments) private_key = load_pem_private_key(private_key.encode(), password=None) signature = private_key.sign( signing_input, padding.PKCS1v15(), hashes.SHA256() ) segments.append(base64.urlsafe_b64encode(signature).rstrip(b'=')) return b'.'.join(segments).decode() def get_access_token(client_email, private_key): jwt = create_jwt(client_email, private_key) with httpx.Client() as client: response = client.post( "https://oauth2.googleapis.com/token", data={ "grant_type": "urn:ietf:params:oauth:grant-type:jwt-bearer", "assertion": jwt }, headers={'Content-Type': "application/x-www-form-urlencoded"} ) response.raise_for_status() return response.json()["access_token"] async def get_vertex_gemini_payload(request, engine, provider): headers = { 'Content-Type': 'application/json' } if provider.get("client_email") and provider.get("private_key"): access_token = get_access_token(provider['client_email'], provider['private_key']) headers['Authorization'] = f"Bearer {access_token}" if provider.get("project_id"): project_id = provider.get("project_id") gemini_stream = "streamGenerateContent" model_dict = get_model_dict(provider) model = model_dict[request.model] location = gem url = "https://{LOCATION}-aiplatform.googleapis.com/v1/projects/{PROJECT_ID}/locations/{LOCATION}/publishers/google/models/{MODEL_ID}:{stream}".format(LOCATION=location.next(), PROJECT_ID=project_id, MODEL_ID=model, stream=gemini_stream) messages = [] systemInstruction = None function_arguments = None for msg in request.messages: if msg.role == "assistant": msg.role = "model" tool_calls = None if isinstance(msg.content, list): content = [] for item in msg.content: if item.type == "text": text_message = await get_text_message(msg.role, item.text, engine) content.append(text_message) elif item.type == "image_url" and provider.get("image", True): image_message = await get_image_message(item.image_url.url, engine) content.append(image_message) else: content = [{"text": msg.content}] tool_calls = msg.tool_calls if tool_calls: tool_call = tool_calls[0] function_arguments = { "functionCall": { "name": tool_call.function.name, "args": json.loads(tool_call.function.arguments) } } messages.append( { "role": "model", "parts": [function_arguments] } ) elif msg.role == "tool": function_call_name = function_arguments["functionCall"]["name"] messages.append( { "role": "function", "parts": [{ "functionResponse": { "name": function_call_name, "response": { "name": function_call_name, "content": { "result": msg.content, } } } }] } ) elif msg.role != "system": messages.append({"role": msg.role, "parts": content}) elif msg.role == "system": systemInstruction = {"parts": content} payload = { "contents": messages, # "safetySettings": [ # { # "category": "HARM_CATEGORY_HARASSMENT", # "threshold": "BLOCK_NONE" # }, # { # "category": "HARM_CATEGORY_HATE_SPEECH", # "threshold": "BLOCK_NONE" # }, # { # "category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", # "threshold": "BLOCK_NONE" # }, # { # "category": "HARM_CATEGORY_DANGEROUS_CONTENT", # "threshold": "BLOCK_NONE" # } # ] "generationConfig": { "temperature": 0.5, "max_output_tokens": 8192, "top_k": 40, "top_p": 0.95 }, } if systemInstruction: payload["system_instruction"] = systemInstruction miss_fields = [ 'model', 'messages', 'stream', 'tool_choice', 'temperature', 'top_p', 'max_tokens', 'presence_penalty', 'frequency_penalty', 'n', 'user', 'include_usage', 'logprobs', 'top_logprobs' ] for field, value in request.model_dump(exclude_unset=True).items(): if field not in miss_fields and value is not None: if field == "tools": payload.update({ "tools": [{ "function_declarations": [tool["function"] for tool in value] }], "tool_config": { "function_calling_config": { "mode": "AUTO" } } }) else: payload[field] = value return url, headers, payload async def get_vertex_claude_payload(request, engine, provider): headers = { 'Content-Type': 'application/json', } if provider.get("client_email") and provider.get("private_key"): access_token = get_access_token(provider['client_email'], provider['private_key']) headers['Authorization'] = f"Bearer {access_token}" if provider.get("project_id"): project_id = provider.get("project_id") model_dict = get_model_dict(provider) model = model_dict[request.model] if "claude-3-5-sonnet" in model: location = c35s elif "claude-3-opus" in model: location = c3o elif "claude-3-sonnet" in model: location = c3s elif "claude-3-haiku" in model: location = c3h claude_stream = "streamRawPredict" url = "https://{LOCATION}-aiplatform.googleapis.com/v1/projects/{PROJECT_ID}/locations/{LOCATION}/publishers/anthropic/models/{MODEL}:{stream}".format(LOCATION=await location.next(), PROJECT_ID=project_id, MODEL=model, stream=claude_stream) messages = [] system_prompt = None tool_id = None for msg in request.messages: tool_call_id = None tool_calls = None if isinstance(msg.content, list): content = [] for item in msg.content: if item.type == "text": text_message = await get_text_message(msg.role, item.text, engine) content.append(text_message) elif item.type == "image_url" and provider.get("image", True): image_message = await get_image_message(item.image_url.url, engine) content.append(image_message) else: content = msg.content tool_calls = msg.tool_calls tool_id = tool_calls[0].id if tool_calls else None or tool_id tool_call_id = msg.tool_call_id if tool_calls: tool_calls_list = [] tool_call = tool_calls[0] tool_calls_list.append({ "type": "tool_use", "id": tool_call.id, "name": tool_call.function.name, "input": json.loads(tool_call.function.arguments), }) messages.append({"role": msg.role, "content": tool_calls_list}) elif tool_call_id: messages.append({"role": "user", "content": [{ "type": "tool_result", "tool_use_id": tool_id, "content": content }]}) elif msg.role == "function": messages.append({"role": "assistant", "content": [{ "type": "tool_use", "id": "toolu_017r5miPMV6PGSNKmhvHPic4", "name": msg.name, "input": {"prompt": "..."} }]}) messages.append({"role": "user", "content": [{ "type": "tool_result", "tool_use_id": "toolu_017r5miPMV6PGSNKmhvHPic4", "content": msg.content }]}) elif msg.role != "system": messages.append({"role": msg.role, "content": content}) elif msg.role == "system": system_prompt = content conversation_len = len(messages) - 1 message_index = 0 while message_index < conversation_len: if messages[message_index]["role"] == messages[message_index + 1]["role"]: if messages[message_index].get("content"): if isinstance(messages[message_index]["content"], list): messages[message_index]["content"].extend(messages[message_index + 1]["content"]) elif isinstance(messages[message_index]["content"], str) and isinstance(messages[message_index + 1]["content"], list): content_list = [{"type": "text", "text": messages[message_index]["content"]}] content_list.extend(messages[message_index + 1]["content"]) messages[message_index]["content"] = content_list else: messages[message_index]["content"] += messages[message_index + 1]["content"] messages.pop(message_index + 1) conversation_len = conversation_len - 1 else: message_index = message_index + 1 model_dict = get_model_dict(provider) model = model_dict[request.model] payload = { "anthropic_version": "vertex-2023-10-16", "messages": messages, "system": system_prompt or "You are Claude, a large language model trained by Anthropic.", "max_tokens": 8192 if "claude-3-5-sonnet" in model else 4096, } if request.max_tokens: payload["max_tokens"] = int(request.max_tokens) miss_fields = [ 'model', 'messages', 'presence_penalty', 'frequency_penalty', 'n', 'user', 'include_usage', ] for field, value in request.model_dump(exclude_unset=True).items(): if field not in miss_fields and value is not None: payload[field] = value if request.tools and provider.get("tools"): tools = [] for tool in request.tools: json_tool = await gpt2claude_tools_json(tool.dict()["function"]) tools.append(json_tool) payload["tools"] = tools if "tool_choice" in payload: if isinstance(payload["tool_choice"], dict): if payload["tool_choice"]["type"] == "function": payload["tool_choice"] = { "type": "tool", "name": payload["tool_choice"]["function"]["name"] } if isinstance(payload["tool_choice"], str): if payload["tool_choice"] == "auto": payload["tool_choice"] = { "type": "auto" } if payload["tool_choice"] == "none": payload["tool_choice"] = { "type": "any" } if provider.get("tools") == False: payload.pop("tools", None) payload.pop("tool_choice", None) return url, headers, payload async def get_gpt_payload(request, engine, provider): headers = { 'Content-Type': 'application/json', } model_dict = get_model_dict(provider) model = model_dict[request.model] if provider.get("api"): headers['Authorization'] = f"Bearer {await provider_api_circular_list[provider['provider']].next(model)}" url = provider['base_url'] messages = [] for msg in request.messages: tool_calls = None tool_call_id = None if isinstance(msg.content, list): content = [] for item in msg.content: if item.type == "text": text_message = await get_text_message(msg.role, item.text, engine) content.append(text_message) elif item.type == "image_url" and provider.get("image", True): image_message = await get_image_message(item.image_url.url, engine) content.append(image_message) else: content = msg.content tool_calls = msg.tool_calls tool_call_id = msg.tool_call_id if tool_calls: tool_calls_list = [] for tool_call in tool_calls: tool_calls_list.append({ "id": tool_call.id, "type": tool_call.type, "function": { "name": tool_call.function.name, "arguments": tool_call.function.arguments } }) if provider.get("tools"): messages.append({"role": msg.role, "tool_calls": tool_calls_list}) elif tool_call_id: if provider.get("tools"): messages.append({"role": msg.role, "tool_call_id": tool_call_id, "content": content}) else: messages.append({"role": msg.role, "content": content}) payload = { "model": model, "messages": messages, } miss_fields = [ 'model', 'messages' ] for field, value in request.model_dump(exclude_unset=True).items(): if field not in miss_fields and value is not None: payload[field] = value if provider.get("tools") == False: payload.pop("tools", None) payload.pop("tool_choice", None) return url, headers, payload async def get_openrouter_payload(request, engine, provider): headers = { 'Content-Type': 'application/json' } model_dict = get_model_dict(provider) model = model_dict[request.model] if provider.get("api"): headers['Authorization'] = f"Bearer {await provider_api_circular_list[provider['provider']].next(model)}" url = provider['base_url'] messages = [] for msg in request.messages: name = None if isinstance(msg.content, list): content = [] for item in msg.content: if item.type == "text": text_message = await get_text_message(msg.role, item.text, engine) content.append(text_message) elif item.type == "image_url" and provider.get("image", True): image_message = await get_image_message(item.image_url.url, engine) content.append(image_message) else: content = msg.content name = msg.name if name: messages.append({"role": msg.role, "name": name, "content": content}) else: # print("content", content) if isinstance(content, list): for item in content: if item["type"] == "text": messages.append({"role": msg.role, "content": item["text"]}) elif item["type"] == "image_url": messages.append({"role": msg.role, "content": item["url"]}) else: messages.append({"role": msg.role, "content": content}) payload = { "model": model, "messages": messages, } miss_fields = [ 'model', 'messages', 'tools', 'tool_choice', 'temperature', 'top_p', 'max_tokens', 'presence_penalty', 'frequency_penalty', 'n', 'user', 'include_usage', 'logprobs', 'top_logprobs' ] for field, value in request.model_dump(exclude_unset=True).items(): if field not in miss_fields and value is not None: payload[field] = value return url, headers, payload async def get_cohere_payload(request, engine, provider): headers = { 'Content-Type': 'application/json' } model_dict = get_model_dict(provider) model = model_dict[request.model] if provider.get("api"): headers['Authorization'] = f"Bearer {await provider_api_circular_list[provider['provider']].next(model)}" url = provider['base_url'] role_map = { "user": "USER", "assistant" : "CHATBOT", "system": "SYSTEM" } messages = [] for msg in request.messages: if isinstance(msg.content, list): content = [] for item in msg.content: if item.type == "text": text_message = await get_text_message(msg.role, item.text, engine) content.append(text_message) else: content = msg.content if isinstance(content, list): for item in content: if item["type"] == "text": messages.append({"role": role_map[msg.role], "message": item["text"]}) else: messages.append({"role": role_map[msg.role], "message": content}) chat_history = messages[:-1] query = messages[-1].get("message") payload = { "model": model, "message": query, } if chat_history: payload["chat_history"] = chat_history miss_fields = [ 'model', 'messages', 'tools', 'tool_choice', 'temperature', 'top_p', 'max_tokens', 'presence_penalty', 'frequency_penalty', 'n', 'user', 'include_usage', 'logprobs', 'top_logprobs' ] for field, value in request.model_dump(exclude_unset=True).items(): if field not in miss_fields and value is not None: payload[field] = value return url, headers, payload async def get_cloudflare_payload(request, engine, provider): headers = { 'Content-Type': 'application/json' } model_dict = get_model_dict(provider) model = model_dict[request.model] if provider.get("api"): headers['Authorization'] = f"Bearer {await provider_api_circular_list[provider['provider']].next(model)}" url = "https://api.cloudflare.com/client/v4/accounts/{cf_account_id}/ai/run/{cf_model_id}".format(cf_account_id=provider['cf_account_id'], cf_model_id=model) msg = request.messages[-1] messages = [] content = None if isinstance(msg.content, list): for item in msg.content: if item.type == "text": content = await get_text_message(msg.role, item.text, engine) else: content = msg.content name = msg.name payload = { "prompt": content, } miss_fields = [ 'model', 'messages', 'tools', 'tool_choice', 'temperature', 'top_p', 'max_tokens', 'presence_penalty', 'frequency_penalty', 'n', 'user', 'include_usage', 'logprobs', 'top_logprobs' ] for field, value in request.model_dump(exclude_unset=True).items(): if field not in miss_fields and value is not None: payload[field] = value return url, headers, payload async def get_o1_payload(request, engine, provider): headers = { 'Content-Type': 'application/json' } model_dict = get_model_dict(provider) model = model_dict[request.model] if provider.get("api"): headers['Authorization'] = f"Bearer {await provider_api_circular_list[provider['provider']].next(model)}" url = provider['base_url'] messages = [] for msg in request.messages: if isinstance(msg.content, list): content = [] for item in msg.content: if item.type == "text": text_message = await get_text_message(msg.role, item.text, engine) content.append(text_message) else: content = msg.content if isinstance(content, list) and msg.role != "system": for item in content: if item["type"] == "text": messages.append({"role": msg.role, "content": item["text"]}) elif msg.role != "system": messages.append({"role": msg.role, "content": content}) payload = { "model": model, "messages": messages, } miss_fields = [ 'model', 'messages', 'tools', 'tool_choice', 'temperature', 'top_p', 'max_tokens', 'presence_penalty', 'frequency_penalty', 'n', 'user', 'include_usage', 'logprobs', 'top_logprobs' ] for field, value in request.model_dump(exclude_unset=True).items(): if field not in miss_fields and value is not None: payload[field] = value return url, headers, payload async def gpt2claude_tools_json(json_dict): import copy json_dict = copy.deepcopy(json_dict) keys_to_change = { "parameters": "input_schema", } for old_key, new_key in keys_to_change.items(): if old_key in json_dict: if new_key: if json_dict[old_key] == None: json_dict[old_key] = { "type": "object", "properties": {} } json_dict[new_key] = json_dict.pop(old_key) else: json_dict.pop(old_key) return json_dict async def get_claude_payload(request, engine, provider): model_dict = get_model_dict(provider) model = model_dict[request.model] headers = { "content-type": "application/json", "x-api-key": f"{await provider_api_circular_list[provider['provider']].next(model)}", "anthropic-version": "2023-06-01", "anthropic-beta": "max-tokens-3-5-sonnet-2024-07-15" if "claude-3-5-sonnet" in model else "tools-2024-05-16", } url = provider['base_url'] messages = [] system_prompt = None tool_id = None for msg in request.messages: tool_call_id = None tool_calls = None if isinstance(msg.content, list): content = [] for item in msg.content: if item.type == "text": text_message = await get_text_message(msg.role, item.text, engine) content.append(text_message) elif item.type == "image_url" and provider.get("image", True): image_message = await get_image_message(item.image_url.url, engine) content.append(image_message) else: content = msg.content tool_calls = msg.tool_calls tool_id = tool_calls[0].id if tool_calls else None or tool_id tool_call_id = msg.tool_call_id if tool_calls: tool_calls_list = [] tool_call = tool_calls[0] tool_calls_list.append({ "type": "tool_use", "id": tool_call.id, "name": tool_call.function.name, "input": json.loads(tool_call.function.arguments), }) messages.append({"role": msg.role, "content": tool_calls_list}) elif tool_call_id: messages.append({"role": "user", "content": [{ "type": "tool_result", "tool_use_id": tool_id, "content": content }]}) elif msg.role == "function": messages.append({"role": "assistant", "content": [{ "type": "tool_use", "id": "toolu_017r5miPMV6PGSNKmhvHPic4", "name": msg.name, "input": {"prompt": "..."} }]}) messages.append({"role": "user", "content": [{ "type": "tool_result", "tool_use_id": "toolu_017r5miPMV6PGSNKmhvHPic4", "content": msg.content }]}) elif msg.role != "system": messages.append({"role": msg.role, "content": content}) elif msg.role == "system": system_prompt = content conversation_len = len(messages) - 1 message_index = 0 while message_index < conversation_len: if messages[message_index]["role"] == messages[message_index + 1]["role"]: if messages[message_index].get("content"): if isinstance(messages[message_index]["content"], list): messages[message_index]["content"].extend(messages[message_index + 1]["content"]) elif isinstance(messages[message_index]["content"], str) and isinstance(messages[message_index + 1]["content"], list): content_list = [{"type": "text", "text": messages[message_index]["content"]}] content_list.extend(messages[message_index + 1]["content"]) messages[message_index]["content"] = content_list else: messages[message_index]["content"] += messages[message_index + 1]["content"] messages.pop(message_index + 1) conversation_len = conversation_len - 1 else: message_index = message_index + 1 model_dict = get_model_dict(provider) model = model_dict[request.model] payload = { "model": model, "messages": messages, "system": system_prompt or "You are Claude, a large language model trained by Anthropic.", "max_tokens": 8192 if "claude-3-5-sonnet" in model else 4096, } if request.max_tokens: payload["max_tokens"] = int(request.max_tokens) miss_fields = [ 'model', 'messages', 'presence_penalty', 'frequency_penalty', 'n', 'user', 'include_usage', ] for field, value in request.model_dump(exclude_unset=True).items(): if field not in miss_fields and value is not None: payload[field] = value if request.tools and provider.get("tools"): tools = [] for tool in request.tools: # print("tool", type(tool), tool) json_tool = await gpt2claude_tools_json(tool.dict()["function"]) tools.append(json_tool) payload["tools"] = tools if "tool_choice" in payload: if isinstance(payload["tool_choice"], dict): if payload["tool_choice"]["type"] == "function": payload["tool_choice"] = { "type": "tool", "name": payload["tool_choice"]["function"]["name"] } if isinstance(payload["tool_choice"], str): if payload["tool_choice"] == "auto": payload["tool_choice"] = { "type": "auto" } if payload["tool_choice"] == "none": payload["tool_choice"] = { "type": "any" } if provider.get("tools") == False: payload.pop("tools", None) payload.pop("tool_choice", None) # print("payload", json.dumps(payload, indent=2, ensure_ascii=False)) return url, headers, payload async def get_dalle_payload(request, engine, provider): model_dict = get_model_dict(provider) model = model_dict[request.model] headers = { "Content-Type": "application/json", } if provider.get("api"): headers['Authorization'] = f"Bearer {await provider_api_circular_list[provider['provider']].next(model)}" url = provider['base_url'] url = BaseAPI(url).image_url payload = { "model": model, "prompt": request.prompt, "n": request.n, "size": request.size } return url, headers, payload async def get_whisper_payload(request, engine, provider): model_dict = get_model_dict(provider) model = model_dict[request.model] headers = { # "Content-Type": "multipart/form-data", } if provider.get("api"): headers['Authorization'] = f"Bearer {await provider_api_circular_list[provider['provider']].next(model)}" url = provider['base_url'] url = BaseAPI(url).audio_transcriptions payload = { "model": model, "file": request.file, } if request.prompt: payload["prompt"] = request.prompt if request.response_format: payload["response_format"] = request.response_format if request.temperature: payload["temperature"] = request.temperature if request.language: payload["language"] = request.language return url, headers, payload async def get_moderation_payload(request, engine, provider): model_dict = get_model_dict(provider) model = model_dict[request.model] headers = { "Content-Type": "application/json", } if provider.get("api"): headers['Authorization'] = f"Bearer {await provider_api_circular_list[provider['provider']].next(model)}" url = provider['base_url'] url = BaseAPI(url).moderations payload = { "input": request.input, } return url, headers, payload async def get_embedding_payload(request, engine, provider): model_dict = get_model_dict(provider) model = model_dict[request.model] headers = { "Content-Type": "application/json", } if provider.get("api"): headers['Authorization'] = f"Bearer {await provider_api_circular_list[provider['provider']].next(model)}" url = provider['base_url'] url = BaseAPI(url).embeddings payload = { "input": request.input, "model": model, } if request.encoding_format: payload["encoding_format"] = request.encoding_format return url, headers, payload async def get_payload(request: RequestModel, engine, provider): if engine == "gemini": return await get_gemini_payload(request, engine, provider) elif engine == "vertex-gemini": return await get_vertex_gemini_payload(request, engine, provider) elif engine == "vertex-claude": return await get_vertex_claude_payload(request, engine, provider) elif engine == "claude": return await get_claude_payload(request, engine, provider) elif engine == "gpt": return await get_gpt_payload(request, engine, provider) elif engine == "openrouter": return await get_openrouter_payload(request, engine, provider) elif engine == "cloudflare": return await get_cloudflare_payload(request, engine, provider) elif engine == "o1": return await get_o1_payload(request, engine, provider) elif engine == "cohere": return await get_cohere_payload(request, engine, provider) elif engine == "dalle": return await get_dalle_payload(request, engine, provider) elif engine == "whisper": return await get_whisper_payload(request, engine, provider) elif engine == "moderation": return await get_moderation_payload(request, engine, provider) elif engine == "embedding": return await get_embedding_payload(request, engine, provider) else: raise ValueError("Unknown payload")