uni-api / response.py
yym68686's picture
✨ Feature: Add feature: Support for text-to-speech endpoint /v1/audio/speech
483c524
raw
history blame
18.2 kB
import json
import httpx
import random
import string
from datetime import datetime
from log_config import logger
from utils import safe_get
# end_of_line = "\n\r\n"
# end_of_line = "\r\n"
# end_of_line = "\n\r"
end_of_line = "\n\n"
# end_of_line = "\r"
# end_of_line = "\n"
async def generate_sse_response(timestamp, model, content=None, tools_id=None, function_call_name=None, function_call_content=None, role=None, total_tokens=0, prompt_tokens=0, completion_tokens=0):
random.seed(timestamp)
random_str = ''.join(random.choices(string.ascii_letters + string.digits, k=29))
sample_data = {
"id": f"chatcmpl-{random_str}",
"object": "chat.completion.chunk",
"created": timestamp,
"model": model,
"choices": [
{
"index": 0,
"delta": {"content": content},
"logprobs": None,
"finish_reason": None
}
],
"usage": None,
"system_fingerprint": "fp_d576307f90",
}
if function_call_content:
sample_data["choices"][0]["delta"] = {"tool_calls":[{"index":0,"function":{"arguments": function_call_content}}]}
if tools_id and function_call_name:
sample_data["choices"][0]["delta"] = {"tool_calls":[{"index":0,"id": tools_id,"type":"function","function":{"name": function_call_name, "arguments":""}}]}
# sample_data["choices"][0]["delta"] = {"tool_calls":[{"index":0,"function":{"id": tools_id, "name": function_call_name}}]}
if role:
sample_data["choices"][0]["delta"] = {"role": role, "content": ""}
if total_tokens:
total_tokens = prompt_tokens + completion_tokens
sample_data["usage"] = {"prompt_tokens": prompt_tokens, "completion_tokens": completion_tokens, "total_tokens": total_tokens}
sample_data["choices"] = []
json_data = json.dumps(sample_data, ensure_ascii=False)
# 构建SSE响应
sse_response = f"data: {json_data}" + end_of_line
return sse_response
async def generate_no_stream_response(timestamp, model, content=None, tools_id=None, function_call_name=None, function_call_content=None, role=None, total_tokens=0, prompt_tokens=0, completion_tokens=0):
random.seed(timestamp)
random_str = ''.join(random.choices(string.ascii_letters + string.digits, k=29))
sample_data = {
"id": f"chatcmpl-{random_str}",
"object": "chat.completion",
"created": timestamp,
"model": model,
"choices": [
{
"index": 0,
"message": {
"role": role,
"content": content,
"refusal": None
},
"logprobs": None,
"finish_reason": "stop"
}
],
"usage": None,
"system_fingerprint": "fp_a7d06e42a7"
}
if total_tokens:
total_tokens = prompt_tokens + completion_tokens
sample_data["usage"] = {"prompt_tokens": prompt_tokens, "completion_tokens": completion_tokens, "total_tokens": total_tokens}
json_data = json.dumps(sample_data, ensure_ascii=False)
return json_data
async def check_response(response, error_log):
if response and not (200 <= response.status_code < 300):
error_message = await response.aread()
error_str = error_message.decode('utf-8', errors='replace')
try:
error_json = json.loads(error_str)
except json.JSONDecodeError:
error_json = error_str
return {"error": f"{error_log} HTTP Error", "status_code": response.status_code, "details": error_json}
return None
async def fetch_gemini_response_stream(client, url, headers, payload, model):
timestamp = int(datetime.timestamp(datetime.now()))
async with client.stream('POST', url, headers=headers, json=payload) as response:
error_message = await check_response(response, "fetch_gemini_response_stream")
if error_message:
yield error_message
return
buffer = ""
revicing_function_call = False
function_full_response = "{"
need_function_call = False
async for chunk in response.aiter_text():
buffer += chunk
while "\n" in buffer:
line, buffer = buffer.split("\n", 1)
# print(line)
if line and '\"text\": \"' in line:
try:
json_data = json.loads( "{" + line + "}")
content = json_data.get('text', '')
content = "\n".join(content.split("\\n"))
sse_string = await generate_sse_response(timestamp, model, content=content)
yield sse_string
except json.JSONDecodeError:
logger.error(f"无法解析JSON: {line}")
if line and ('\"functionCall\": {' in line or revicing_function_call):
revicing_function_call = True
need_function_call = True
if ']' in line:
revicing_function_call = False
continue
function_full_response += line
if need_function_call:
function_call = json.loads(function_full_response)
function_call_name = function_call["functionCall"]["name"]
sse_string = await generate_sse_response(timestamp, model, content=None, tools_id="chatcmpl-9inWv0yEtgn873CxMBzHeCeiHctTV", function_call_name=function_call_name)
yield sse_string
function_full_response = json.dumps(function_call["functionCall"]["args"])
sse_string = await generate_sse_response(timestamp, model, content=None, tools_id="chatcmpl-9inWv0yEtgn873CxMBzHeCeiHctTV", function_call_name=None, function_call_content=function_full_response)
yield sse_string
yield "data: [DONE]" + end_of_line
async def fetch_vertex_claude_response_stream(client, url, headers, payload, model):
timestamp = int(datetime.timestamp(datetime.now()))
async with client.stream('POST', url, headers=headers, json=payload) as response:
error_message = await check_response(response, "fetch_vertex_claude_response_stream")
if error_message:
yield error_message
return
buffer = ""
revicing_function_call = False
function_full_response = "{"
need_function_call = False
async for chunk in response.aiter_text():
buffer += chunk
while "\n" in buffer:
line, buffer = buffer.split("\n", 1)
# logger.info(f"{line}")
if line and '\"text\": \"' in line:
try:
json_data = json.loads( "{" + line + "}")
content = json_data.get('text', '')
content = "\n".join(content.split("\\n"))
sse_string = await generate_sse_response(timestamp, model, content=content)
yield sse_string
except json.JSONDecodeError:
logger.error(f"无法解析JSON: {line}")
if line and ('\"type\": \"tool_use\"' in line or revicing_function_call):
revicing_function_call = True
need_function_call = True
if ']' in line:
revicing_function_call = False
continue
function_full_response += line
if need_function_call:
function_call = json.loads(function_full_response)
function_call_name = function_call["name"]
function_call_id = function_call["id"]
sse_string = await generate_sse_response(timestamp, model, content=None, tools_id=function_call_id, function_call_name=function_call_name)
yield sse_string
function_full_response = json.dumps(function_call["input"])
sse_string = await generate_sse_response(timestamp, model, content=None, tools_id=function_call_id, function_call_name=None, function_call_content=function_full_response)
yield sse_string
yield "data: [DONE]" + end_of_line
async def fetch_gpt_response_stream(client, url, headers, payload):
timestamp = int(datetime.timestamp(datetime.now()))
random.seed(timestamp)
random_str = ''.join(random.choices(string.ascii_letters + string.digits, k=29))
async with client.stream('POST', url, headers=headers, json=payload) as response:
error_message = await check_response(response, "fetch_gpt_response_stream")
if error_message:
yield error_message
return
buffer = ""
async for chunk in response.aiter_text():
buffer += chunk
while "\n" in buffer:
line, buffer = buffer.split("\n", 1)
# logger.info("line: %s", repr(line))
if line and line != "data: " and line != "data:" and not line.startswith(": "):
line = json.loads(line.lstrip("data: "))
line['id'] = f"chatcmpl-{random_str}"
yield "data: " + json.dumps(line).strip() + end_of_line
async def fetch_cloudflare_response_stream(client, url, headers, payload, model):
timestamp = int(datetime.timestamp(datetime.now()))
async with client.stream('POST', url, headers=headers, json=payload) as response:
error_message = await check_response(response, "fetch_gpt_response_stream")
if error_message:
yield error_message
return
buffer = ""
async for chunk in response.aiter_text():
buffer += chunk
while "\n" in buffer:
line, buffer = buffer.split("\n", 1)
# logger.info("line: %s", repr(line))
if line.startswith("data:"):
line = line.lstrip("data: ")
if line == "[DONE]":
yield "data: [DONE]" + end_of_line
return
resp: dict = json.loads(line)
message = resp.get("response")
if message:
sse_string = await generate_sse_response(timestamp, model, content=message)
yield sse_string
async def fetch_cohere_response_stream(client, url, headers, payload, model):
timestamp = int(datetime.timestamp(datetime.now()))
async with client.stream('POST', url, headers=headers, json=payload) as response:
error_message = await check_response(response, "fetch_gpt_response_stream")
if error_message:
yield error_message
return
buffer = ""
async for chunk in response.aiter_text():
buffer += chunk
while "\n" in buffer:
line, buffer = buffer.split("\n", 1)
# logger.info("line: %s", repr(line))
resp: dict = json.loads(line)
if resp.get("is_finished") == True:
yield "data: [DONE]" + end_of_line
return
if resp.get("event_type") == "text-generation":
message = resp.get("text")
sse_string = await generate_sse_response(timestamp, model, content=message)
yield sse_string
async def fetch_claude_response_stream(client, url, headers, payload, model):
timestamp = int(datetime.timestamp(datetime.now()))
async with client.stream('POST', url, headers=headers, json=payload) as response:
error_message = await check_response(response, "fetch_claude_response_stream")
if error_message:
yield error_message
return
buffer = ""
input_tokens = 0
async for chunk in response.aiter_text():
# logger.info(f"chunk: {repr(chunk)}")
buffer += chunk
while "\n" in buffer:
line, buffer = buffer.split("\n", 1)
# logger.info(line)
if line.startswith("data:"):
line = line.lstrip("data: ")
resp: dict = json.loads(line)
message = resp.get("message")
if message:
role = message.get("role")
if role:
sse_string = await generate_sse_response(timestamp, model, None, None, None, None, role)
yield sse_string
tokens_use = message.get("usage")
if tokens_use:
input_tokens = tokens_use.get("input_tokens", 0)
usage = resp.get("usage")
if usage:
output_tokens = usage.get("output_tokens", 0)
total_tokens = input_tokens + output_tokens
sse_string = await generate_sse_response(timestamp, model, None, None, None, None, None, total_tokens, input_tokens, output_tokens)
yield sse_string
# print("\n\rtotal_tokens", total_tokens)
tool_use = resp.get("content_block")
tools_id = None
function_call_name = None
if tool_use and "tool_use" == tool_use['type']:
# print("tool_use", tool_use)
tools_id = tool_use["id"]
if "name" in tool_use:
function_call_name = tool_use["name"]
sse_string = await generate_sse_response(timestamp, model, None, tools_id, function_call_name, None)
yield sse_string
delta = resp.get("delta")
# print("delta", delta)
if not delta:
continue
if "text" in delta:
content = delta["text"]
sse_string = await generate_sse_response(timestamp, model, content, None, None)
yield sse_string
if "partial_json" in delta:
# {"type":"input_json_delta","partial_json":""}
function_call_content = delta["partial_json"]
sse_string = await generate_sse_response(timestamp, model, None, None, None, function_call_content)
yield sse_string
yield "data: [DONE]" + end_of_line
async def fetch_response(client, url, headers, payload, engine, model):
response = None
if payload.get("file"):
file = payload.pop("file")
response = await client.post(url, headers=headers, data=payload, files={"file": file})
else:
response = await client.post(url, headers=headers, json=payload)
error_message = await check_response(response, "fetch_response")
if error_message:
yield error_message
return
if engine == "tts":
yield response.read()
elif engine == "gemini" or engine == "vertex-gemini":
response_json = response.json()
if isinstance(response_json, str):
import ast
parsed_data = ast.literal_eval(str(response_json))
elif isinstance(response_json, list):
parsed_data = response_json
else:
logger.error(f"error fetch_response: Unknown response_json type: {type(response_json)}")
parsed_data = response_json
content = ""
for item in parsed_data:
chunk = safe_get(item, "candidates", 0, "content", "parts", 0, "text")
# logger.info(f"chunk: {repr(chunk)}")
if chunk:
content += chunk
usage_metadata = safe_get(parsed_data, -1, "usageMetadata")
prompt_tokens = usage_metadata.get("promptTokenCount", 0)
candidates_tokens = usage_metadata.get("candidatesTokenCount", 0)
total_tokens = usage_metadata.get("totalTokenCount", 0)
role = safe_get(parsed_data, -1, "candidates", 0, "content", "role")
if role == "model":
role = "assistant"
else:
logger.error(f"Unknown role: {role}")
role = "assistant"
timestamp = int(datetime.timestamp(datetime.now()))
yield await generate_no_stream_response(timestamp, model, content=content, tools_id=None, function_call_name=None, function_call_content=None, role=role, total_tokens=total_tokens, prompt_tokens=prompt_tokens, completion_tokens=candidates_tokens)
else:
response_json = response.json()
yield response_json
async def fetch_response_stream(client, url, headers, payload, engine, model):
# try:
if engine == "gemini" or engine == "vertex-gemini":
async for chunk in fetch_gemini_response_stream(client, url, headers, payload, model):
yield chunk
elif engine == "claude" or engine == "vertex-claude":
async for chunk in fetch_claude_response_stream(client, url, headers, payload, model):
yield chunk
elif engine == "gpt":
async for chunk in fetch_gpt_response_stream(client, url, headers, payload):
yield chunk
elif engine == "openrouter":
async for chunk in fetch_gpt_response_stream(client, url, headers, payload):
yield chunk
elif engine == "cloudflare":
async for chunk in fetch_cloudflare_response_stream(client, url, headers, payload, model):
yield chunk
elif engine == "cohere":
async for chunk in fetch_cohere_response_stream(client, url, headers, payload, model):
yield chunk
else:
raise ValueError("Unknown response")
# except httpx.ConnectError as e:
# yield {"error": f"500", "details": "fetch_response_stream Connect Error"}
# except httpx.ReadTimeout as e:
# yield {"error": f"500", "details": "fetch_response_stream Read Response Timeout"}