|
import json |
|
import httpx |
|
from datetime import datetime |
|
|
|
|
|
async def generate_sse_response(timestamp, model, content=None, tools_id=None, function_call_name=None, function_call_content=None, role=None, tokens_use=None, total_tokens=None): |
|
sample_data = { |
|
"id": "chatcmpl-9ijPeRHa0wtyA2G8wq5z8FC3wGMzc", |
|
"object": "chat.completion.chunk", |
|
"created": timestamp, |
|
"model": model, |
|
"system_fingerprint": "fp_d576307f90", |
|
"choices": [ |
|
{ |
|
"index": 0, |
|
"delta": {"content": content}, |
|
"logprobs": None, |
|
"finish_reason": None |
|
} |
|
], |
|
"usage": None |
|
} |
|
if function_call_content: |
|
sample_data["choices"][0]["delta"] = {"tool_calls":[{"index":0,"function":{"arguments": function_call_content}}]} |
|
if tools_id and function_call_name: |
|
sample_data["choices"][0]["delta"] = {"tool_calls":[{"index":0,"id":tools_id,"type":"function","function":{"name":function_call_name,"arguments":""}}]} |
|
|
|
if role: |
|
sample_data["choices"][0]["delta"] = {"role": role, "content": ""} |
|
json_data = json.dumps(sample_data, ensure_ascii=False) |
|
|
|
|
|
sse_response = f"data: {json_data}\n\n" |
|
|
|
return sse_response |
|
|
|
async def fetch_gemini_response_stream(client, url, headers, payload, model): |
|
timestamp = datetime.timestamp(datetime.now()) |
|
async with client.stream('POST', url, headers=headers, json=payload) as response: |
|
buffer = "" |
|
async for chunk in response.aiter_text(): |
|
buffer += chunk |
|
while "\n" in buffer: |
|
line, buffer = buffer.split("\n", 1) |
|
print(line) |
|
if line and '\"text\": \"' in line: |
|
try: |
|
json_data = json.loads( "{" + line + "}") |
|
content = json_data.get('text', '') |
|
content = "\n".join(content.split("\\n")) |
|
sse_string = await generate_sse_response(timestamp, model, content) |
|
yield sse_string |
|
except json.JSONDecodeError: |
|
print(f"无法解析JSON: {line}") |
|
|
|
|
|
if buffer: |
|
|
|
if '\"text\": \"' in buffer: |
|
try: |
|
json_data = json.loads(buffer) |
|
content = json_data.get('text', '') |
|
content = "\n".join(content.split("\\n")) |
|
sse_string = await generate_sse_response(timestamp, model, content) |
|
yield sse_string |
|
except json.JSONDecodeError: |
|
print(f"无法解析JSON: {buffer}") |
|
|
|
|
|
|
|
async def fetch_gpt_response_stream(client, url, headers, payload): |
|
async with client.stream('POST', url, headers=headers, json=payload) as response: |
|
async for chunk in response.aiter_bytes(): |
|
print(chunk.decode('utf-8')) |
|
yield chunk |
|
|
|
async def fetch_claude_response_stream(client, url, headers, payload, model): |
|
timestamp = datetime.timestamp(datetime.now()) |
|
async with client.stream('POST', url, headers=headers, json=payload) as response: |
|
|
|
if response.status_code == 200: |
|
print("请求成功,状态码是200") |
|
else: |
|
print('\033[31m') |
|
print(f"请求失败,状态码是{response.status_code},错误信息:") |
|
error_message = await response.aread() |
|
error_str = error_message.decode('utf-8', errors='replace') |
|
error_json = json.loads(error_str) |
|
print(json.dumps(error_json, indent=4, ensure_ascii=False)) |
|
print('\033[0m') |
|
yield {"error": f"HTTP Error {response.status_code}", "details": error_json} |
|
|
|
|
|
buffer = "" |
|
async for chunk in response.aiter_bytes(): |
|
buffer += chunk.decode('utf-8') |
|
while "\n" in buffer: |
|
line, buffer = buffer.split("\n", 1) |
|
print(line) |
|
|
|
if line.startswith("data:"): |
|
print(line) |
|
line = line[6:] |
|
resp: dict = json.loads(line) |
|
message = resp.get("message") |
|
if message: |
|
tokens_use = resp.get("usage") |
|
role = message.get("role") |
|
if role: |
|
sse_string = await generate_sse_response(timestamp, model, None, None, None, None, role) |
|
yield sse_string |
|
if tokens_use: |
|
total_tokens = tokens_use["input_tokens"] + tokens_use["output_tokens"] |
|
|
|
tool_use = resp.get("content_block") |
|
tools_id = None |
|
function_call_name = None |
|
if tool_use and "tool_use" == tool_use['type']: |
|
|
|
tools_id = tool_use["id"] |
|
if "name" in tool_use: |
|
function_call_name = tool_use["name"] |
|
sse_string = await generate_sse_response(timestamp, model, None, tools_id, function_call_name, None) |
|
yield sse_string |
|
delta = resp.get("delta") |
|
|
|
if not delta: |
|
continue |
|
if "text" in delta: |
|
content = delta["text"] |
|
sse_string = await generate_sse_response(timestamp, model, content, None, None) |
|
yield sse_string |
|
if "partial_json" in delta: |
|
|
|
function_call_content = delta["partial_json"] |
|
sse_string = await generate_sse_response(timestamp, model, None, None, None, function_call_content) |
|
yield sse_string |
|
|
|
|
|
|
|
async def fetch_response(client, url, headers, payload): |
|
response = await client.post(url, headers=headers, json=payload) |
|
return response.json() |
|
|
|
async def fetch_response_stream(client, url, headers, payload, engine, model): |
|
for _ in range(2): |
|
try: |
|
if engine == "gemini": |
|
async for chunk in fetch_gemini_response_stream(client, url, headers, payload, model): |
|
yield chunk |
|
elif engine == "claude": |
|
async for chunk in fetch_claude_response_stream(client, url, headers, payload, model): |
|
yield chunk |
|
elif engine == "gpt": |
|
async for chunk in fetch_gpt_response_stream(client, url, headers, payload): |
|
yield chunk |
|
else: |
|
raise ValueError("Unknown response") |
|
break |
|
except httpx.ConnectError as e: |
|
print(f"连接错误: {e}") |
|
continue |