|
import os |
|
import re |
|
import json |
|
import httpx |
|
import base64 |
|
import urllib.parse |
|
|
|
from models import RequestModel |
|
from utils import c35s, c3s, c3o, c3h, gem, BaseAPI |
|
|
|
def encode_image(image_path): |
|
with open(image_path, "rb") as image_file: |
|
return base64.b64encode(image_file.read()).decode('utf-8') |
|
|
|
async def get_doc_from_url(url): |
|
filename = urllib.parse.unquote(url.split("/")[-1]) |
|
transport = httpx.AsyncHTTPTransport( |
|
http2=True, |
|
verify=False, |
|
retries=1 |
|
) |
|
async with httpx.AsyncClient(transport=transport) as client: |
|
try: |
|
response = await client.get( |
|
url, |
|
timeout=30.0 |
|
) |
|
with open(filename, 'wb') as f: |
|
f.write(response.content) |
|
|
|
except httpx.RequestError as e: |
|
print(f"An error occurred while requesting {e.request.url!r}.") |
|
|
|
return filename |
|
|
|
async def get_encode_image(image_url): |
|
filename = await get_doc_from_url(image_url) |
|
image_path = os.getcwd() + "/" + filename |
|
base64_image = encode_image(image_path) |
|
if filename.endswith(".png"): |
|
prompt = f"data:image/png;base64,{base64_image}" |
|
else: |
|
prompt = f"data:image/jpeg;base64,{base64_image}" |
|
os.remove(image_path) |
|
return prompt |
|
|
|
async def get_image_message(base64_image, engine = None): |
|
if base64_image.startswith("http"): |
|
base64_image = await get_encode_image(base64_image) |
|
colon_index = base64_image.index(":") |
|
semicolon_index = base64_image.index(";") |
|
image_type = base64_image[colon_index + 1:semicolon_index] |
|
|
|
if "gpt" == engine: |
|
return { |
|
"type": "image_url", |
|
"image_url": { |
|
"url": base64_image, |
|
} |
|
} |
|
if "claude" == engine or "vertex-claude" == engine: |
|
return { |
|
"type": "image", |
|
"source": { |
|
"type": "base64", |
|
"media_type": image_type, |
|
"data": base64_image.split(",")[1], |
|
} |
|
} |
|
if "gemini" == engine or "vertex-gemini" == engine: |
|
return { |
|
"inlineData": { |
|
"mimeType": image_type, |
|
"data": base64_image.split(",")[1], |
|
} |
|
} |
|
raise ValueError("Unknown engine") |
|
|
|
async def get_text_message(role, message, engine = None): |
|
if "gpt" == engine or "claude" == engine or "openrouter" == engine or "vertex-claude" == engine or "o1" == engine: |
|
return {"type": "text", "text": message} |
|
if "gemini" == engine or "vertex-gemini" == engine: |
|
return {"text": message} |
|
if engine == "cloudflare": |
|
return message |
|
if engine == "cohere": |
|
return message |
|
raise ValueError("Unknown engine") |
|
|
|
async def get_gemini_payload(request, engine, provider): |
|
headers = { |
|
'Content-Type': 'application/json' |
|
} |
|
model = provider['model'][request.model] |
|
gemini_stream = "streamGenerateContent" |
|
url = provider['base_url'] |
|
if url.endswith("v1beta"): |
|
url = "https://generativelanguage.googleapis.com/v1beta/models/{model}:{stream}?key={api_key}".format(model=model, stream=gemini_stream, api_key=provider['api'].next()) |
|
if url.endswith("v1"): |
|
url = "https://generativelanguage.googleapis.com/v1/models/{model}:{stream}?key={api_key}".format(model=model, stream=gemini_stream, api_key=provider['api'].next()) |
|
|
|
messages = [] |
|
systemInstruction = None |
|
function_arguments = None |
|
for msg in request.messages: |
|
if msg.role == "assistant": |
|
msg.role = "model" |
|
tool_calls = None |
|
if isinstance(msg.content, list): |
|
content = [] |
|
for item in msg.content: |
|
if item.type == "text": |
|
text_message = await get_text_message(msg.role, item.text, engine) |
|
content.append(text_message) |
|
elif item.type == "image_url": |
|
image_message = await get_image_message(item.image_url.url, engine) |
|
content.append(image_message) |
|
else: |
|
content = [{"text": msg.content}] |
|
tool_calls = msg.tool_calls |
|
|
|
if tool_calls: |
|
tool_call = tool_calls[0] |
|
function_arguments = { |
|
"functionCall": { |
|
"name": tool_call.function.name, |
|
"args": json.loads(tool_call.function.arguments) |
|
} |
|
} |
|
messages.append( |
|
{ |
|
"role": "model", |
|
"parts": [function_arguments] |
|
} |
|
) |
|
elif msg.role == "tool": |
|
function_call_name = function_arguments["functionCall"]["name"] |
|
messages.append( |
|
{ |
|
"role": "function", |
|
"parts": [{ |
|
"functionResponse": { |
|
"name": function_call_name, |
|
"response": { |
|
"name": function_call_name, |
|
"content": { |
|
"result": msg.content, |
|
} |
|
} |
|
} |
|
}] |
|
} |
|
) |
|
elif msg.role != "system": |
|
messages.append({"role": msg.role, "parts": content}) |
|
elif msg.role == "system": |
|
content[0]["text"] = re.sub(r"_+", "_", content[0]["text"]) |
|
systemInstruction = {"parts": content} |
|
|
|
|
|
payload = { |
|
"contents": messages, |
|
"safetySettings": [ |
|
{ |
|
"category": "HARM_CATEGORY_HARASSMENT", |
|
"threshold": "BLOCK_NONE" |
|
}, |
|
{ |
|
"category": "HARM_CATEGORY_HATE_SPEECH", |
|
"threshold": "BLOCK_NONE" |
|
}, |
|
{ |
|
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", |
|
"threshold": "BLOCK_NONE" |
|
}, |
|
{ |
|
"category": "HARM_CATEGORY_DANGEROUS_CONTENT", |
|
"threshold": "BLOCK_NONE" |
|
} |
|
] |
|
} |
|
if systemInstruction: |
|
payload["systemInstruction"] = systemInstruction |
|
|
|
miss_fields = [ |
|
'model', |
|
'messages', |
|
'stream', |
|
'tool_choice', |
|
'temperature', |
|
'top_p', |
|
'max_tokens', |
|
'presence_penalty', |
|
'frequency_penalty', |
|
'n', |
|
'user', |
|
'include_usage', |
|
'logprobs', |
|
'top_logprobs' |
|
] |
|
|
|
for field, value in request.model_dump(exclude_unset=True).items(): |
|
if field not in miss_fields and value is not None: |
|
if field == "tools": |
|
payload.update({ |
|
"tools": [{ |
|
"function_declarations": [tool["function"] for tool in value] |
|
}], |
|
"tool_config": { |
|
"function_calling_config": { |
|
"mode": "AUTO" |
|
} |
|
} |
|
}) |
|
else: |
|
payload[field] = value |
|
|
|
return url, headers, payload |
|
|
|
import time |
|
from cryptography.hazmat.primitives import hashes |
|
from cryptography.hazmat.primitives.asymmetric import padding |
|
from cryptography.hazmat.primitives.serialization import load_pem_private_key |
|
|
|
def create_jwt(client_email, private_key): |
|
|
|
header = json.dumps({ |
|
"alg": "RS256", |
|
"typ": "JWT" |
|
}).encode() |
|
|
|
|
|
now = int(time.time()) |
|
payload = json.dumps({ |
|
"iss": client_email, |
|
"scope": "https://www.googleapis.com/auth/cloud-platform", |
|
"aud": "https://oauth2.googleapis.com/token", |
|
"exp": now + 3600, |
|
"iat": now |
|
}).encode() |
|
|
|
|
|
segments = [ |
|
base64.urlsafe_b64encode(header).rstrip(b'='), |
|
base64.urlsafe_b64encode(payload).rstrip(b'=') |
|
] |
|
|
|
|
|
signing_input = b'.'.join(segments) |
|
private_key = load_pem_private_key(private_key.encode(), password=None) |
|
signature = private_key.sign( |
|
signing_input, |
|
padding.PKCS1v15(), |
|
hashes.SHA256() |
|
) |
|
|
|
segments.append(base64.urlsafe_b64encode(signature).rstrip(b'=')) |
|
return b'.'.join(segments).decode() |
|
|
|
def get_access_token(client_email, private_key): |
|
jwt = create_jwt(client_email, private_key) |
|
|
|
with httpx.Client() as client: |
|
response = client.post( |
|
"https://oauth2.googleapis.com/token", |
|
data={ |
|
"grant_type": "urn:ietf:params:oauth:grant-type:jwt-bearer", |
|
"assertion": jwt |
|
}, |
|
headers={'Content-Type': "application/x-www-form-urlencoded"} |
|
) |
|
response.raise_for_status() |
|
return response.json()["access_token"] |
|
|
|
async def get_vertex_gemini_payload(request, engine, provider): |
|
headers = { |
|
'Content-Type': 'application/json' |
|
} |
|
if provider.get("client_email") and provider.get("private_key"): |
|
access_token = get_access_token(provider['client_email'], provider['private_key']) |
|
headers['Authorization'] = f"Bearer {access_token}" |
|
if provider.get("project_id"): |
|
project_id = provider.get("project_id") |
|
|
|
gemini_stream = "streamGenerateContent" |
|
model = provider['model'][request.model] |
|
location = gem |
|
url = "https://{LOCATION}-aiplatform.googleapis.com/v1/projects/{PROJECT_ID}/locations/{LOCATION}/publishers/google/models/{MODEL_ID}:{stream}".format(LOCATION=location.next(), PROJECT_ID=project_id, MODEL_ID=model, stream=gemini_stream) |
|
|
|
messages = [] |
|
systemInstruction = None |
|
function_arguments = None |
|
for msg in request.messages: |
|
if msg.role == "assistant": |
|
msg.role = "model" |
|
tool_calls = None |
|
if isinstance(msg.content, list): |
|
content = [] |
|
for item in msg.content: |
|
if item.type == "text": |
|
text_message = await get_text_message(msg.role, item.text, engine) |
|
content.append(text_message) |
|
elif item.type == "image_url": |
|
image_message = await get_image_message(item.image_url.url, engine) |
|
content.append(image_message) |
|
else: |
|
content = [{"text": msg.content}] |
|
tool_calls = msg.tool_calls |
|
|
|
if tool_calls: |
|
tool_call = tool_calls[0] |
|
function_arguments = { |
|
"functionCall": { |
|
"name": tool_call.function.name, |
|
"args": json.loads(tool_call.function.arguments) |
|
} |
|
} |
|
messages.append( |
|
{ |
|
"role": "model", |
|
"parts": [function_arguments] |
|
} |
|
) |
|
elif msg.role == "tool": |
|
function_call_name = function_arguments["functionCall"]["name"] |
|
messages.append( |
|
{ |
|
"role": "function", |
|
"parts": [{ |
|
"functionResponse": { |
|
"name": function_call_name, |
|
"response": { |
|
"name": function_call_name, |
|
"content": { |
|
"result": msg.content, |
|
} |
|
} |
|
} |
|
}] |
|
} |
|
) |
|
elif msg.role != "system": |
|
messages.append({"role": msg.role, "parts": content}) |
|
elif msg.role == "system": |
|
systemInstruction = {"parts": content} |
|
|
|
|
|
payload = { |
|
"contents": messages, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"generationConfig": { |
|
"temperature": 0.5, |
|
"max_output_tokens": 8192, |
|
"top_k": 40, |
|
"top_p": 0.95 |
|
}, |
|
} |
|
if systemInstruction: |
|
payload["system_instruction"] = systemInstruction |
|
|
|
miss_fields = [ |
|
'model', |
|
'messages', |
|
'stream', |
|
'tool_choice', |
|
'temperature', |
|
'top_p', |
|
'max_tokens', |
|
'presence_penalty', |
|
'frequency_penalty', |
|
'n', |
|
'user', |
|
'include_usage', |
|
'logprobs', |
|
'top_logprobs' |
|
] |
|
|
|
for field, value in request.model_dump(exclude_unset=True).items(): |
|
if field not in miss_fields and value is not None: |
|
if field == "tools": |
|
payload.update({ |
|
"tools": [{ |
|
"function_declarations": [tool["function"] for tool in value] |
|
}], |
|
"tool_config": { |
|
"function_calling_config": { |
|
"mode": "AUTO" |
|
} |
|
} |
|
}) |
|
else: |
|
payload[field] = value |
|
|
|
return url, headers, payload |
|
|
|
async def get_vertex_claude_payload(request, engine, provider): |
|
headers = { |
|
'Content-Type': 'application/json', |
|
} |
|
if provider.get("client_email") and provider.get("private_key"): |
|
access_token = get_access_token(provider['client_email'], provider['private_key']) |
|
headers['Authorization'] = f"Bearer {access_token}" |
|
if provider.get("project_id"): |
|
project_id = provider.get("project_id") |
|
|
|
model = provider['model'][request.model] |
|
if "claude-3-5-sonnet" in model: |
|
location = c35s |
|
elif "claude-3-opus" in model: |
|
location = c3o |
|
elif "claude-3-sonnet" in model: |
|
location = c3s |
|
elif "claude-3-haiku" in model: |
|
location = c3h |
|
|
|
claude_stream = "streamRawPredict" |
|
url = "https://{LOCATION}-aiplatform.googleapis.com/v1/projects/{PROJECT_ID}/locations/{LOCATION}/publishers/anthropic/models/{MODEL}:{stream}".format(LOCATION=location.next(), PROJECT_ID=project_id, MODEL=model, stream=claude_stream) |
|
|
|
messages = [] |
|
system_prompt = None |
|
tool_id = None |
|
for msg in request.messages: |
|
tool_call_id = None |
|
tool_calls = None |
|
if isinstance(msg.content, list): |
|
content = [] |
|
for item in msg.content: |
|
if item.type == "text": |
|
text_message = await get_text_message(msg.role, item.text, engine) |
|
content.append(text_message) |
|
elif item.type == "image_url": |
|
image_message = await get_image_message(item.image_url.url, engine) |
|
content.append(image_message) |
|
else: |
|
content = msg.content |
|
tool_calls = msg.tool_calls |
|
tool_id = tool_calls[0].id if tool_calls else None or tool_id |
|
tool_call_id = msg.tool_call_id |
|
|
|
if tool_calls: |
|
tool_calls_list = [] |
|
tool_call = tool_calls[0] |
|
tool_calls_list.append({ |
|
"type": "tool_use", |
|
"id": tool_call.id, |
|
"name": tool_call.function.name, |
|
"input": json.loads(tool_call.function.arguments), |
|
}) |
|
messages.append({"role": msg.role, "content": tool_calls_list}) |
|
elif tool_call_id: |
|
messages.append({"role": "user", "content": [{ |
|
"type": "tool_result", |
|
"tool_use_id": tool_id, |
|
"content": content |
|
}]}) |
|
elif msg.role == "function": |
|
messages.append({"role": "assistant", "content": [{ |
|
"type": "tool_use", |
|
"id": "toolu_017r5miPMV6PGSNKmhvHPic4", |
|
"name": msg.name, |
|
"input": {"prompt": "..."} |
|
}]}) |
|
messages.append({"role": "user", "content": [{ |
|
"type": "tool_result", |
|
"tool_use_id": "toolu_017r5miPMV6PGSNKmhvHPic4", |
|
"content": msg.content |
|
}]}) |
|
elif msg.role != "system": |
|
messages.append({"role": msg.role, "content": content}) |
|
elif msg.role == "system": |
|
system_prompt = content |
|
|
|
conversation_len = len(messages) - 1 |
|
message_index = 0 |
|
while message_index < conversation_len: |
|
if messages[message_index]["role"] == messages[message_index + 1]["role"]: |
|
if messages[message_index].get("content"): |
|
if isinstance(messages[message_index]["content"], list): |
|
messages[message_index]["content"].extend(messages[message_index + 1]["content"]) |
|
elif isinstance(messages[message_index]["content"], str) and isinstance(messages[message_index + 1]["content"], list): |
|
content_list = [{"type": "text", "text": messages[message_index]["content"]}] |
|
content_list.extend(messages[message_index + 1]["content"]) |
|
messages[message_index]["content"] = content_list |
|
else: |
|
messages[message_index]["content"] += messages[message_index + 1]["content"] |
|
messages.pop(message_index + 1) |
|
conversation_len = conversation_len - 1 |
|
else: |
|
message_index = message_index + 1 |
|
|
|
model = provider['model'][request.model] |
|
payload = { |
|
"anthropic_version": "vertex-2023-10-16", |
|
"messages": messages, |
|
"system": system_prompt or "You are Claude, a large language model trained by Anthropic.", |
|
"max_tokens": 8192 if "claude-3-5-sonnet" in model else 4096, |
|
} |
|
|
|
if request.max_tokens: |
|
payload["max_tokens"] = int(request.max_tokens) |
|
|
|
miss_fields = [ |
|
'model', |
|
'messages', |
|
'presence_penalty', |
|
'frequency_penalty', |
|
'n', |
|
'user', |
|
'include_usage', |
|
] |
|
|
|
for field, value in request.model_dump(exclude_unset=True).items(): |
|
if field not in miss_fields and value is not None: |
|
payload[field] = value |
|
|
|
if request.tools and provider.get("tools"): |
|
tools = [] |
|
for tool in request.tools: |
|
json_tool = await gpt2claude_tools_json(tool.dict()["function"]) |
|
tools.append(json_tool) |
|
payload["tools"] = tools |
|
if "tool_choice" in payload: |
|
if isinstance(payload["tool_choice"], dict): |
|
if payload["tool_choice"]["type"] == "function": |
|
payload["tool_choice"] = { |
|
"type": "tool", |
|
"name": payload["tool_choice"]["function"]["name"] |
|
} |
|
if isinstance(payload["tool_choice"], str): |
|
if payload["tool_choice"] == "auto": |
|
payload["tool_choice"] = { |
|
"type": "auto" |
|
} |
|
if payload["tool_choice"] == "none": |
|
payload["tool_choice"] = { |
|
"type": "any" |
|
} |
|
|
|
if provider.get("tools") == False: |
|
payload.pop("tools", None) |
|
payload.pop("tool_choice", None) |
|
|
|
return url, headers, payload |
|
|
|
async def get_gpt_payload(request, engine, provider): |
|
headers = { |
|
'Content-Type': 'application/json', |
|
} |
|
if provider.get("api"): |
|
headers['Authorization'] = f"Bearer {provider['api'].next()}" |
|
url = provider['base_url'] |
|
|
|
messages = [] |
|
for msg in request.messages: |
|
tool_calls = None |
|
tool_call_id = None |
|
if isinstance(msg.content, list): |
|
content = [] |
|
for item in msg.content: |
|
if item.type == "text": |
|
text_message = await get_text_message(msg.role, item.text, engine) |
|
content.append(text_message) |
|
elif item.type == "image_url": |
|
image_message = await get_image_message(item.image_url.url, engine) |
|
content.append(image_message) |
|
else: |
|
content = msg.content |
|
tool_calls = msg.tool_calls |
|
tool_call_id = msg.tool_call_id |
|
|
|
if tool_calls: |
|
tool_calls_list = [] |
|
for tool_call in tool_calls: |
|
tool_calls_list.append({ |
|
"id": tool_call.id, |
|
"type": tool_call.type, |
|
"function": { |
|
"name": tool_call.function.name, |
|
"arguments": tool_call.function.arguments |
|
} |
|
}) |
|
if provider.get("tools"): |
|
messages.append({"role": msg.role, "tool_calls": tool_calls_list}) |
|
elif tool_call_id: |
|
if provider.get("tools"): |
|
messages.append({"role": msg.role, "tool_call_id": tool_call_id, "content": content}) |
|
else: |
|
messages.append({"role": msg.role, "content": content}) |
|
|
|
model = provider['model'][request.model] |
|
payload = { |
|
"model": model, |
|
"messages": messages, |
|
} |
|
|
|
miss_fields = [ |
|
'model', |
|
'messages' |
|
] |
|
|
|
for field, value in request.model_dump(exclude_unset=True).items(): |
|
if field not in miss_fields and value is not None: |
|
payload[field] = value |
|
|
|
if provider.get("tools") == False: |
|
payload.pop("tools", None) |
|
payload.pop("tool_choice", None) |
|
|
|
return url, headers, payload |
|
|
|
async def get_openrouter_payload(request, engine, provider): |
|
headers = { |
|
'Content-Type': 'application/json' |
|
} |
|
if provider.get("api"): |
|
headers['Authorization'] = f"Bearer {provider['api'].next()}" |
|
|
|
url = provider['base_url'] |
|
|
|
messages = [] |
|
for msg in request.messages: |
|
name = None |
|
if isinstance(msg.content, list): |
|
content = [] |
|
for item in msg.content: |
|
if item.type == "text": |
|
text_message = await get_text_message(msg.role, item.text, engine) |
|
content.append(text_message) |
|
elif item.type == "image_url": |
|
image_message = await get_image_message(item.image_url.url, engine) |
|
content.append(image_message) |
|
else: |
|
content = msg.content |
|
name = msg.name |
|
if name: |
|
messages.append({"role": msg.role, "name": name, "content": content}) |
|
else: |
|
|
|
if isinstance(content, list): |
|
for item in content: |
|
if item["type"] == "text": |
|
messages.append({"role": msg.role, "content": item["text"]}) |
|
elif item["type"] == "image_url": |
|
messages.append({"role": msg.role, "content": item["url"]}) |
|
else: |
|
messages.append({"role": msg.role, "content": content}) |
|
|
|
model = provider['model'][request.model] |
|
payload = { |
|
"model": model, |
|
"messages": messages, |
|
} |
|
|
|
miss_fields = [ |
|
'model', |
|
'messages', |
|
'tools', |
|
'tool_choice', |
|
'temperature', |
|
'top_p', |
|
'max_tokens', |
|
'presence_penalty', |
|
'frequency_penalty', |
|
'n', |
|
'user', |
|
'include_usage', |
|
'logprobs', |
|
'top_logprobs' |
|
] |
|
|
|
for field, value in request.model_dump(exclude_unset=True).items(): |
|
if field not in miss_fields and value is not None: |
|
payload[field] = value |
|
|
|
return url, headers, payload |
|
|
|
async def get_cohere_payload(request, engine, provider): |
|
headers = { |
|
'Content-Type': 'application/json' |
|
} |
|
if provider.get("api"): |
|
headers['Authorization'] = f"Bearer {provider['api'].next()}" |
|
|
|
url = provider['base_url'] |
|
|
|
role_map = { |
|
"user": "USER", |
|
"assistant" : "CHATBOT", |
|
"system": "SYSTEM" |
|
} |
|
|
|
messages = [] |
|
for msg in request.messages: |
|
if isinstance(msg.content, list): |
|
content = [] |
|
for item in msg.content: |
|
if item.type == "text": |
|
text_message = await get_text_message(msg.role, item.text, engine) |
|
content.append(text_message) |
|
else: |
|
content = msg.content |
|
|
|
if isinstance(content, list): |
|
for item in content: |
|
if item["type"] == "text": |
|
messages.append({"role": role_map[msg.role], "message": item["text"]}) |
|
else: |
|
messages.append({"role": role_map[msg.role], "message": content}) |
|
|
|
model = provider['model'][request.model] |
|
chat_history = messages[:-1] |
|
query = messages[-1].get("message") |
|
payload = { |
|
"model": model, |
|
"message": query, |
|
} |
|
|
|
if chat_history: |
|
payload["chat_history"] = chat_history |
|
|
|
miss_fields = [ |
|
'model', |
|
'messages', |
|
'tools', |
|
'tool_choice', |
|
'temperature', |
|
'top_p', |
|
'max_tokens', |
|
'presence_penalty', |
|
'frequency_penalty', |
|
'n', |
|
'user', |
|
'include_usage', |
|
'logprobs', |
|
'top_logprobs' |
|
] |
|
|
|
for field, value in request.model_dump(exclude_unset=True).items(): |
|
if field not in miss_fields and value is not None: |
|
payload[field] = value |
|
|
|
return url, headers, payload |
|
|
|
async def get_cloudflare_payload(request, engine, provider): |
|
headers = { |
|
'Content-Type': 'application/json' |
|
} |
|
if provider.get("api"): |
|
headers['Authorization'] = f"Bearer {provider['api'].next()}" |
|
|
|
model = provider['model'][request.model] |
|
url = "https://api.cloudflare.com/client/v4/accounts/{cf_account_id}/ai/run/{cf_model_id}".format(cf_account_id=provider['cf_account_id'], cf_model_id=model) |
|
|
|
msg = request.messages[-1] |
|
messages = [] |
|
content = None |
|
if isinstance(msg.content, list): |
|
for item in msg.content: |
|
if item.type == "text": |
|
content = await get_text_message(msg.role, item.text, engine) |
|
else: |
|
content = msg.content |
|
name = msg.name |
|
|
|
model = provider['model'][request.model] |
|
payload = { |
|
"prompt": content, |
|
} |
|
|
|
miss_fields = [ |
|
'model', |
|
'messages', |
|
'tools', |
|
'tool_choice', |
|
'temperature', |
|
'top_p', |
|
'max_tokens', |
|
'presence_penalty', |
|
'frequency_penalty', |
|
'n', |
|
'user', |
|
'include_usage', |
|
'logprobs', |
|
'top_logprobs' |
|
] |
|
|
|
for field, value in request.model_dump(exclude_unset=True).items(): |
|
if field not in miss_fields and value is not None: |
|
payload[field] = value |
|
|
|
return url, headers, payload |
|
|
|
async def get_o1_payload(request, engine, provider): |
|
headers = { |
|
'Content-Type': 'application/json' |
|
} |
|
if provider.get("api"): |
|
headers['Authorization'] = f"Bearer {provider['api'].next()}" |
|
|
|
url = provider['base_url'] |
|
|
|
messages = [] |
|
for msg in request.messages: |
|
if isinstance(msg.content, list): |
|
content = [] |
|
for item in msg.content: |
|
if item.type == "text": |
|
text_message = await get_text_message(msg.role, item.text, engine) |
|
content.append(text_message) |
|
else: |
|
content = msg.content |
|
|
|
if isinstance(content, list) and msg.role != "system": |
|
for item in content: |
|
if item["type"] == "text": |
|
messages.append({"role": msg.role, "content": item["text"]}) |
|
elif msg.role != "system": |
|
messages.append({"role": msg.role, "content": content}) |
|
|
|
model = provider['model'][request.model] |
|
payload = { |
|
"model": model, |
|
"messages": messages, |
|
} |
|
|
|
miss_fields = [ |
|
'model', |
|
'messages', |
|
'tools', |
|
'tool_choice', |
|
'temperature', |
|
'top_p', |
|
'max_tokens', |
|
'presence_penalty', |
|
'frequency_penalty', |
|
'n', |
|
'user', |
|
'include_usage', |
|
'logprobs', |
|
'top_logprobs' |
|
] |
|
|
|
for field, value in request.model_dump(exclude_unset=True).items(): |
|
if field not in miss_fields and value is not None: |
|
payload[field] = value |
|
|
|
return url, headers, payload |
|
|
|
async def gpt2claude_tools_json(json_dict): |
|
import copy |
|
json_dict = copy.deepcopy(json_dict) |
|
keys_to_change = { |
|
"parameters": "input_schema", |
|
} |
|
for old_key, new_key in keys_to_change.items(): |
|
if old_key in json_dict: |
|
if new_key: |
|
if json_dict[old_key] == None: |
|
json_dict[old_key] = { |
|
"type": "object", |
|
"properties": {} |
|
} |
|
json_dict[new_key] = json_dict.pop(old_key) |
|
else: |
|
json_dict.pop(old_key) |
|
return json_dict |
|
|
|
async def get_claude_payload(request, engine, provider): |
|
model = provider['model'][request.model] |
|
headers = { |
|
"content-type": "application/json", |
|
"x-api-key": f"{provider['api'].next()}", |
|
"anthropic-version": "2023-06-01", |
|
"anthropic-beta": "max-tokens-3-5-sonnet-2024-07-15" if "claude-3-5-sonnet" in model else "tools-2024-05-16", |
|
} |
|
url = provider['base_url'] |
|
|
|
messages = [] |
|
system_prompt = None |
|
tool_id = None |
|
for msg in request.messages: |
|
tool_call_id = None |
|
tool_calls = None |
|
if isinstance(msg.content, list): |
|
content = [] |
|
for item in msg.content: |
|
if item.type == "text": |
|
text_message = await get_text_message(msg.role, item.text, engine) |
|
content.append(text_message) |
|
elif item.type == "image_url": |
|
image_message = await get_image_message(item.image_url.url, engine) |
|
content.append(image_message) |
|
else: |
|
content = msg.content |
|
tool_calls = msg.tool_calls |
|
tool_id = tool_calls[0].id if tool_calls else None or tool_id |
|
tool_call_id = msg.tool_call_id |
|
|
|
if tool_calls: |
|
tool_calls_list = [] |
|
tool_call = tool_calls[0] |
|
tool_calls_list.append({ |
|
"type": "tool_use", |
|
"id": tool_call.id, |
|
"name": tool_call.function.name, |
|
"input": json.loads(tool_call.function.arguments), |
|
}) |
|
messages.append({"role": msg.role, "content": tool_calls_list}) |
|
elif tool_call_id: |
|
messages.append({"role": "user", "content": [{ |
|
"type": "tool_result", |
|
"tool_use_id": tool_id, |
|
"content": content |
|
}]}) |
|
elif msg.role == "function": |
|
messages.append({"role": "assistant", "content": [{ |
|
"type": "tool_use", |
|
"id": "toolu_017r5miPMV6PGSNKmhvHPic4", |
|
"name": msg.name, |
|
"input": {"prompt": "..."} |
|
}]}) |
|
messages.append({"role": "user", "content": [{ |
|
"type": "tool_result", |
|
"tool_use_id": "toolu_017r5miPMV6PGSNKmhvHPic4", |
|
"content": msg.content |
|
}]}) |
|
elif msg.role != "system": |
|
messages.append({"role": msg.role, "content": content}) |
|
elif msg.role == "system": |
|
system_prompt = content |
|
|
|
conversation_len = len(messages) - 1 |
|
message_index = 0 |
|
while message_index < conversation_len: |
|
if messages[message_index]["role"] == messages[message_index + 1]["role"]: |
|
if messages[message_index].get("content"): |
|
if isinstance(messages[message_index]["content"], list): |
|
messages[message_index]["content"].extend(messages[message_index + 1]["content"]) |
|
elif isinstance(messages[message_index]["content"], str) and isinstance(messages[message_index + 1]["content"], list): |
|
content_list = [{"type": "text", "text": messages[message_index]["content"]}] |
|
content_list.extend(messages[message_index + 1]["content"]) |
|
messages[message_index]["content"] = content_list |
|
else: |
|
messages[message_index]["content"] += messages[message_index + 1]["content"] |
|
messages.pop(message_index + 1) |
|
conversation_len = conversation_len - 1 |
|
else: |
|
message_index = message_index + 1 |
|
|
|
model = provider['model'][request.model] |
|
payload = { |
|
"model": model, |
|
"messages": messages, |
|
"system": system_prompt or "You are Claude, a large language model trained by Anthropic.", |
|
"max_tokens": 8192 if "claude-3-5-sonnet" in model else 4096, |
|
} |
|
|
|
if request.max_tokens: |
|
payload["max_tokens"] = int(request.max_tokens) |
|
|
|
miss_fields = [ |
|
'model', |
|
'messages', |
|
'presence_penalty', |
|
'frequency_penalty', |
|
'n', |
|
'user', |
|
'include_usage', |
|
] |
|
|
|
for field, value in request.model_dump(exclude_unset=True).items(): |
|
if field not in miss_fields and value is not None: |
|
payload[field] = value |
|
|
|
if request.tools and provider.get("tools"): |
|
tools = [] |
|
for tool in request.tools: |
|
|
|
json_tool = await gpt2claude_tools_json(tool.dict()["function"]) |
|
tools.append(json_tool) |
|
payload["tools"] = tools |
|
if "tool_choice" in payload: |
|
if isinstance(payload["tool_choice"], dict): |
|
if payload["tool_choice"]["type"] == "function": |
|
payload["tool_choice"] = { |
|
"type": "tool", |
|
"name": payload["tool_choice"]["function"]["name"] |
|
} |
|
if isinstance(payload["tool_choice"], str): |
|
if payload["tool_choice"] == "auto": |
|
payload["tool_choice"] = { |
|
"type": "auto" |
|
} |
|
if payload["tool_choice"] == "none": |
|
payload["tool_choice"] = { |
|
"type": "any" |
|
} |
|
|
|
if provider.get("tools") == False: |
|
payload.pop("tools", None) |
|
payload.pop("tool_choice", None) |
|
|
|
|
|
|
|
return url, headers, payload |
|
|
|
async def get_dalle_payload(request, engine, provider): |
|
model = provider['model'][request.model] |
|
headers = { |
|
"Content-Type": "application/json", |
|
} |
|
if provider.get("api"): |
|
headers['Authorization'] = f"Bearer {provider['api'].next()}" |
|
url = provider['base_url'] |
|
url = BaseAPI(url).image_url |
|
|
|
payload = { |
|
"model": model, |
|
"prompt": request.prompt, |
|
"n": request.n, |
|
"size": request.size |
|
} |
|
|
|
return url, headers, payload |
|
|
|
async def get_payload(request: RequestModel, engine, provider): |
|
if engine == "gemini": |
|
return await get_gemini_payload(request, engine, provider) |
|
elif engine == "vertex-gemini": |
|
return await get_vertex_gemini_payload(request, engine, provider) |
|
elif engine == "vertex-claude": |
|
return await get_vertex_claude_payload(request, engine, provider) |
|
elif engine == "claude": |
|
return await get_claude_payload(request, engine, provider) |
|
elif engine == "gpt": |
|
return await get_gpt_payload(request, engine, provider) |
|
elif engine == "openrouter": |
|
return await get_openrouter_payload(request, engine, provider) |
|
elif engine == "cloudflare": |
|
return await get_cloudflare_payload(request, engine, provider) |
|
elif engine == "o1": |
|
return await get_o1_payload(request, engine, provider) |
|
elif engine == "cohere": |
|
return await get_cohere_payload(request, engine, provider) |
|
elif engine == "dalle": |
|
return await get_dalle_payload(request, engine, provider) |
|
else: |
|
raise ValueError("Unknown payload") |