File size: 14,553 Bytes
1af48fa
 
819dd2f
 
a1d3f78
 
1af48fa
1de140d
1af48fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e09244d
 
 
cb6cbda
e09244d
52bcfe4
 
1de140d
 
 
 
1af48fa
 
 
60e7a94
1af48fa
 
 
2ec0842
 
 
 
 
 
 
 
3972d74
2ec0842
 
1af48fa
237c936
819dd2f
2ec0842
 
 
 
819dd2f
cb6cbda
 
 
819dd2f
 
 
 
93c3f12
819dd2f
1af48fa
819dd2f
1af48fa
 
1de140d
1af48fa
 
a1d3f78
1af48fa
cb6cbda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60e7a94
1af48fa
7d44776
237c936
7d44776
2ec0842
 
 
 
 
7d44776
 
 
 
 
 
 
 
95ca783
7d44776
 
 
 
 
1de140d
7d44776
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60e7a94
7d44776
95ca783
8eca72e
 
 
 
133f622
 
8eca72e
 
 
 
 
 
 
 
133f622
95ca783
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb02b52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c405f98
237c936
819dd2f
2ec0842
 
 
 
819dd2f
1de140d
2cdadb6
6916ae4
2cdadb6
819dd2f
 
e81d06a
3e3ea9a
819dd2f
1de140d
819dd2f
 
 
 
 
 
e09244d
1de140d
819dd2f
1de140d
 
 
 
 
 
 
 
 
819dd2f
 
 
 
 
 
 
 
 
1af48fa
819dd2f
 
 
 
 
 
 
 
 
 
 
 
 
60e7a94
819dd2f
1af48fa
2ec0842
 
 
 
 
 
1af48fa
 
359a819
73a667f
359a819
 
73a667f
359a819
 
 
 
 
 
 
 
95ca783
 
 
eb02b52
 
 
359a819
 
 
 
 
a1d3f78
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import json
import httpx
from datetime import datetime

from log_config import logger


async def generate_sse_response(timestamp, model, content=None, tools_id=None, function_call_name=None, function_call_content=None, role=None, total_tokens=0, prompt_tokens=0, completion_tokens=0):
    sample_data = {
        "id": "chatcmpl-9ijPeRHa0wtyA2G8wq5z8FC3wGMzc",
        "object": "chat.completion.chunk",
        "created": timestamp,
        "model": model,
        "system_fingerprint": "fp_d576307f90",
        "choices": [
            {
                "index": 0,
                "delta": {"content": content},
                "logprobs": None,
                "finish_reason": None
            }
        ],
        "usage": None
    }
    if function_call_content:
        sample_data["choices"][0]["delta"] = {"tool_calls":[{"index":0,"function":{"arguments": function_call_content}}]}
    if tools_id and function_call_name:
        sample_data["choices"][0]["delta"] = {"tool_calls":[{"index":0,"id": tools_id,"type":"function","function":{"name": function_call_name, "arguments":""}}]}
        # sample_data["choices"][0]["delta"] = {"tool_calls":[{"index":0,"function":{"id": tools_id, "name": function_call_name}}]}
    if role:
        sample_data["choices"][0]["delta"] = {"role": role, "content": ""}
    if total_tokens:
        total_tokens = prompt_tokens + completion_tokens
        sample_data["usage"] = {"prompt_tokens": prompt_tokens, "completion_tokens": completion_tokens,"total_tokens": total_tokens}
        sample_data["choices"] = []
    json_data = json.dumps(sample_data, ensure_ascii=False)

    # 构建SSE响应
    sse_response = f"data: {json_data}\n\r\n"

    return sse_response

async def check_response(response, error_log):
    if response.status_code != 200:
        error_message = await response.aread()
        error_str = error_message.decode('utf-8', errors='replace')
        try:
            error_json = json.loads(error_str)
        except json.JSONDecodeError:
            error_json = error_str
        return {"error": f"{error_log} HTTP Error", "status_code": response.status_code, "details": error_json}
    return None

async def fetch_gemini_response_stream(client, url, headers, payload, model):
    timestamp = int(datetime.timestamp(datetime.now()))
    async with client.stream('POST', url, headers=headers, json=payload) as response:
        error_message = await check_response(response, "fetch_gemini_response_stream")
        if error_message:
            yield error_message
            return
        buffer = ""
        revicing_function_call = False
        function_full_response = "{"
        need_function_call = False
        async for chunk in response.aiter_text():
            buffer += chunk
            while "\n" in buffer:
                line, buffer = buffer.split("\n", 1)
                # print(line)
                if line and '\"text\": \"' in line:
                    try:
                        json_data = json.loads( "{" + line + "}")
                        content = json_data.get('text', '')
                        content = "\n".join(content.split("\\n"))
                        sse_string = await generate_sse_response(timestamp, model, content=content)
                        yield sse_string
                    except json.JSONDecodeError:
                        logger.error(f"无法解析JSON: {line}")

                if line and ('\"functionCall\": {' in line or revicing_function_call):
                    revicing_function_call = True
                    need_function_call = True
                    if ']' in line:
                        revicing_function_call = False
                        continue

                    function_full_response += line

        if need_function_call:
            function_call = json.loads(function_full_response)
            function_call_name = function_call["functionCall"]["name"]
            sse_string = await generate_sse_response(timestamp, model, content=None, tools_id="chatcmpl-9inWv0yEtgn873CxMBzHeCeiHctTV", function_call_name=function_call_name)
            yield sse_string
            function_full_response = json.dumps(function_call["functionCall"]["args"])
            sse_string = await generate_sse_response(timestamp, model, content=None, tools_id="chatcmpl-9inWv0yEtgn873CxMBzHeCeiHctTV", function_call_name=None, function_call_content=function_full_response)
            yield sse_string
        yield "data: [DONE]\n\r\n"

async def fetch_vertex_claude_response_stream(client, url, headers, payload, model):
    timestamp = int(datetime.timestamp(datetime.now()))
    async with client.stream('POST', url, headers=headers, json=payload) as response:
        error_message = await check_response(response, "fetch_vertex_claude_response_stream")
        if error_message:
            yield error_message
            return

        buffer = ""
        revicing_function_call = False
        function_full_response = "{"
        need_function_call = False
        async for chunk in response.aiter_text():
            buffer += chunk
            while "\n" in buffer:
                line, buffer = buffer.split("\n", 1)
                # logger.info(f"{line}")
                if line and '\"text\": \"' in line:
                    try:
                        json_data = json.loads( "{" + line + "}")
                        content = json_data.get('text', '')
                        content = "\n".join(content.split("\\n"))
                        sse_string = await generate_sse_response(timestamp, model, content=content)
                        yield sse_string
                    except json.JSONDecodeError:
                        logger.error(f"无法解析JSON: {line}")

                if line and ('\"type\": \"tool_use\"' in line or revicing_function_call):
                    revicing_function_call = True
                    need_function_call = True
                    if ']' in line:
                        revicing_function_call = False
                        continue

                    function_full_response += line

        if need_function_call:
            function_call = json.loads(function_full_response)
            function_call_name = function_call["name"]
            function_call_id = function_call["id"]
            sse_string = await generate_sse_response(timestamp, model, content=None, tools_id=function_call_id, function_call_name=function_call_name)
            yield sse_string
            function_full_response = json.dumps(function_call["input"])
            sse_string = await generate_sse_response(timestamp, model, content=None, tools_id=function_call_id, function_call_name=None, function_call_content=function_full_response)
            yield sse_string
        yield "data: [DONE]\n\r\n"

async def fetch_gpt_response_stream(client, url, headers, payload):
    async with client.stream('POST', url, headers=headers, json=payload) as response:
        error_message = await check_response(response, "fetch_gpt_response_stream")
        if error_message:
            yield error_message
            return

        buffer = ""
        async for chunk in response.aiter_text():
            buffer += chunk
            while "\n" in buffer:
                line, buffer = buffer.split("\n", 1)
                # logger.info("line: %s", repr(line))
                if line and line != "data: " and line != "data:" and not line.startswith(": "):
                    yield line.strip() + "\n\r\n"

async def fetch_cloudflare_response_stream(client, url, headers, payload, model):
    timestamp = int(datetime.timestamp(datetime.now()))
    async with client.stream('POST', url, headers=headers, json=payload) as response:
        error_message = await check_response(response, "fetch_gpt_response_stream")
        if error_message:
            yield error_message
            return

        buffer = ""
        async for chunk in response.aiter_text():
            buffer += chunk
            while "\n" in buffer:
                line, buffer = buffer.split("\n", 1)
                # logger.info("line: %s", repr(line))
                if line.startswith("data:"):
                    line = line.lstrip("data: ")
                    if line == "[DONE]":
                        yield "data: [DONE]\n\r\n"
                        return
                    resp: dict = json.loads(line)
                    message = resp.get("response")
                    if message:
                        sse_string = await generate_sse_response(timestamp, model, content=message)
                        yield sse_string

async def fetch_cohere_response_stream(client, url, headers, payload, model):
    timestamp = int(datetime.timestamp(datetime.now()))
    async with client.stream('POST', url, headers=headers, json=payload) as response:
        error_message = await check_response(response, "fetch_gpt_response_stream")
        if error_message:
            yield error_message
            return

        buffer = ""
        async for chunk in response.aiter_text():
            buffer += chunk
            while "\n" in buffer:
                line, buffer = buffer.split("\n", 1)
                # logger.info("line: %s", repr(line))
                resp: dict = json.loads(line)
                if resp.get("is_finished") == True:
                    yield "data: [DONE]\n\r\n"
                    return
                if resp.get("event_type") == "text-generation":
                    message = resp.get("text")
                    sse_string = await generate_sse_response(timestamp, model, content=message)
                    yield sse_string

async def fetch_claude_response_stream(client, url, headers, payload, model):
    timestamp = int(datetime.timestamp(datetime.now()))
    async with client.stream('POST', url, headers=headers, json=payload) as response:
        error_message = await check_response(response, "fetch_claude_response_stream")
        if error_message:
            yield error_message
            return
        buffer = ""
        input_tokens = 0
        async for chunk in response.aiter_text():
            # logger.info(f"chunk: {repr(chunk)}")
            buffer += chunk
            while "\n" in buffer:
                line, buffer = buffer.split("\n", 1)
                # logger.info(line)

                if line.startswith("data:"):
                    line = line.lstrip("data: ")
                    resp: dict = json.loads(line)
                    message = resp.get("message")
                    if message:
                        role = message.get("role")
                        if role:
                            sse_string = await generate_sse_response(timestamp, model, None, None, None, None, role)
                            yield sse_string
                        tokens_use = message.get("usage")
                        if tokens_use:
                            input_tokens = tokens_use.get("input_tokens", 0)
                    usage = resp.get("usage")
                    if usage:
                        output_tokens = usage.get("output_tokens", 0)
                        total_tokens = input_tokens + output_tokens
                        sse_string = await generate_sse_response(timestamp, model, None, None, None, None, None, total_tokens, input_tokens, output_tokens)
                        yield sse_string
                        # print("\n\rtotal_tokens", total_tokens)

                    tool_use = resp.get("content_block")
                    tools_id = None
                    function_call_name = None
                    if tool_use and "tool_use" == tool_use['type']:
                        # print("tool_use", tool_use)
                        tools_id = tool_use["id"]
                        if "name" in tool_use:
                            function_call_name = tool_use["name"]
                            sse_string = await generate_sse_response(timestamp, model, None, tools_id, function_call_name, None)
                            yield sse_string
                    delta = resp.get("delta")
                    # print("delta", delta)
                    if not delta:
                        continue
                    if "text" in delta:
                        content = delta["text"]
                        sse_string = await generate_sse_response(timestamp, model, content, None, None)
                        yield sse_string
                    if "partial_json" in delta:
                        # {"type":"input_json_delta","partial_json":""}
                        function_call_content = delta["partial_json"]
                        sse_string = await generate_sse_response(timestamp, model, None, None, None, function_call_content)
                        yield sse_string
        yield "data: [DONE]\n\r\n"

async def fetch_response(client, url, headers, payload):
    response = await client.post(url, headers=headers, json=payload)
    error_message = await check_response(response, "fetch_response")
    if error_message:
        yield error_message
        return
    yield response.json()

async def fetch_response_stream(client, url, headers, payload, engine, model):
    try:
        if engine == "gemini" or engine == "vertex-gemini":
            async for chunk in fetch_gemini_response_stream(client, url, headers, payload, model):
                yield chunk
        elif engine == "claude" or engine == "vertex-claude":
            async for chunk in fetch_claude_response_stream(client, url, headers, payload, model):
                yield chunk
        elif engine == "gpt":
            async for chunk in fetch_gpt_response_stream(client, url, headers, payload):
                yield chunk
        elif engine == "openrouter":
            async for chunk in fetch_gpt_response_stream(client, url, headers, payload):
                yield chunk
        elif engine == "cloudflare":
            async for chunk in fetch_cloudflare_response_stream(client, url, headers, payload, model):
                yield chunk
        elif engine == "cohere":
            async for chunk in fetch_cohere_response_stream(client, url, headers, payload, model):
                yield chunk
        else:
            raise ValueError("Unknown response")
    except httpx.ConnectError as e:
        yield {"error": f"500", "details": "fetch_response_stream Connect Error"}
    except httpx.ReadTimeout as e:
        yield {"error": f"500", "details": "fetch_response_stream Read Response Timeout"}