File size: 4,148 Bytes
aeec83c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44caf41
aeec83c
 
73a667f
aeec83c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44caf41
aeec83c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import requests
import base64
import json
import os
from datetime import datetime

# 設置API密鑰和自定義base URL
API_KEY = ''
BASE_URL = 'http://localhost:8000/v1'
SAVE_DIR = 'safe_output'  # 保存 JSON 輸出的目錄

def ensure_save_directory():
    if not os.path.exists(SAVE_DIR):
        os.makedirs(SAVE_DIR)

def image_to_base64(image_path):
    with open(image_path, "rb") as image_file:
        return base64.b64encode(image_file.read()).decode('utf-8')

def get_model_response(image_base64):
    headers = {
        "Content-Type": "application/json",
        "Authorization": f"Bearer {API_KEY}"
    }

    tools = [
        {
            "type": "function",
            "function": {
                "name": "extract_underlined_text",
                "description": "從圖片中提取紅色下劃線的文字",
                "parameters": {
                    "type": "object",
                    "properties": {
                        "underlined_text": {
                            "type": "array",
                            "items": {"type": "string"},
                            "description": "紅色下劃線的文字列表"
                        }
                    },
                    "required": ["underlined_text"]
                }
            }
        }
    ]

    payload = {
        "model": "claude-3-5-sonnet",
        "messages": [
            {
                "role": "user",
                "content": [
                    {
                        "type": "text",
                        "text": "請仔細分析圖片,並提取所有使用紅色筆在單字、單詞或句子下方畫有橫線的文字。只提取有紅色下劃線的文字,忽略其他未標記的文字。將結果以 JSON 格式輸出,格式為 {\"underlined_text\": [\"文字1\", \"文字2\", ...]}。"
                    },
                    {
                        "type": "image_url",
                        "image_url": {
                            "url": f"data:image/jpeg;base64,{image_base64}"
                        }
                    }
                ]
            }
        ],
        # "stream": True,
        "tools": tools,
        "tool_choice": {"type": "function", "function": {"name": "extract_underlined_text"}},
        "max_tokens": 1000
    }

    try:
        response = requests.post(f"{BASE_URL}/chat/completions", headers=headers, json=payload, timeout=30)
        response.raise_for_status()
        return response.json()
    except requests.exceptions.RequestException as e:
        return f"Error: {e}"

def save_json_output(data):
    ensure_save_directory()
    timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
    filename = f"{SAVE_DIR}/output_{timestamp}.json"
    with open(filename, 'w', encoding='utf-8') as f:
        json.dump(data, f, ensure_ascii=False, indent=2)
    return filename

def main(image_path):
    image_base64 = image_to_base64(image_path)

    response = get_model_response(image_base64)

    print("模型回應:")
    print(json.dumps(response, indent=2, ensure_ascii=False))

    if isinstance(response, str) and response.startswith("Error"):
        print(response)
        return

    if 'choices' in response and response['choices']:
        message = response['choices'][0]['message']
        if 'tool_calls' in message:
            tool_call = message['tool_calls'][0]
            if tool_call['function']['name'] == 'extract_underlined_text':
                function_args = json.loads(tool_call['function']['arguments'])
                print("\n提取的紅色下劃線文字:")
                print(json.dumps(function_args, indent=2, ensure_ascii=False))

                # 保存 JSON 輸出
                saved_file = save_json_output(function_args)
                print(f"\nJSON 輸出已保存至: {saved_file}")
            else:
                print("\n模型調用了未預期的函數。")
        else:
            print("\n模型沒有調用工具。")
    else:
        print("\n無法解析回應。")

if __name__ == "__main__":
    image_path = "1.jpg"  # 替換為您的圖像路徑
    main(image_path)