File size: 37,424 Bytes
5c2c740
5eb8cba
819dd2f
eb02b52
5c2c740
 
 
eb02b52
 
 
5c2c740
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1af48fa
5c2c740
 
14428d9
 
 
5c2c740
1af48fa
 
 
 
 
 
 
73a667f
1af48fa
 
 
 
14428d9
1af48fa
 
 
73a667f
1af48fa
 
14428d9
1af48fa
 
 
 
 
 
e5b8220
1af48fa
73a667f
1af48fa
95ca783
 
eb02b52
 
1af48fa
 
 
 
 
 
52bcfe4
f3fce0a
cb6cbda
 
aeec83c
cb6cbda
aeec83c
1af48fa
 
3c06783
cb6cbda
1af48fa
766167a
 
cb6cbda
1af48fa
 
 
 
 
 
 
 
 
 
766167a
cb6cbda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1af48fa
cb6cbda
5eb8cba
3c06783
1af48fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c06783
 
1af48fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb6cbda
 
 
 
 
 
 
 
 
 
 
 
 
1af48fa
 
 
edb14b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b159d8
1af48fa
 
 
edb14b7
 
 
3b159d8
 
 
f3fce0a
3b159d8
432fcd1
3b159d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d44776
3b159d8
 
 
 
edb14b7
 
3b159d8
 
 
 
 
 
 
 
 
 
 
f3fce0a
3b159d8
edb14b7
 
7d44776
894ff24
edb14b7
7d44776
894ff24
edb14b7
 
 
 
 
 
 
 
 
 
7d44776
edb14b7
894ff24
7d44776
edb14b7
 
7d44776
69fd3e6
 
 
 
 
 
 
 
894ff24
7d44776
 
894ff24
7d44776
 
9874f60
 
 
 
 
 
 
 
 
 
 
 
edb14b7
7d44776
edb14b7
7d44776
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
edb14b7
7d44776
edb14b7
7d44776
 
 
7f8be8f
edb14b7
 
7f8be8f
 
9b5984b
edb14b7
 
 
 
 
 
 
 
 
 
 
 
7d44776
 
 
 
 
 
 
 
 
44caf41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d44776
 
 
 
edb14b7
 
 
 
 
 
 
2a56a92
aeec83c
1af48fa
 
 
 
0140d23
 
1af48fa
 
 
 
 
 
 
 
 
 
 
0140d23
 
 
 
 
 
 
 
 
 
 
 
 
 
f3ea9b1
 
0140d23
f3ea9b1
 
1af48fa
 
 
52bcfe4
1af48fa
52bcfe4
1af48fa
 
 
 
 
 
 
 
 
 
 
 
8748c7e
 
 
 
1af48fa
 
60cf2f7
 
 
 
89ae4e8
aeec83c
89ae4e8
60cf2f7
 
 
 
bafce90
60cf2f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb02b52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95ca783
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1126d73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aea01d0
1126d73
 
 
aea01d0
1126d73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c405f98
 
 
 
 
 
 
 
 
6b0ab57
 
 
 
 
c405f98
 
 
 
 
1af48fa
01cf123
c405f98
 
aeec83c
c405f98
01cf123
c405f98
 
 
 
499f79d
894ff24
c405f98
809165c
894ff24
c405f98
 
 
 
 
 
 
 
 
 
 
809165c
894ff24
809165c
 
 
 
69fd3e6
 
 
 
 
 
 
 
894ff24
809165c
 
894ff24
809165c
 
9874f60
 
 
 
 
 
 
 
 
 
 
 
c405f98
 
 
 
 
819dd2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52bcfe4
c405f98
52bcfe4
c405f98
499f79d
7f8be8f
c405f98
 
7f8be8f
 
 
c405f98
 
 
 
 
 
 
 
 
 
 
 
 
 
8748c7e
e09244d
 
819dd2f
e09244d
 
 
 
44caf41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8748c7e
 
 
 
 
 
c405f98
 
1af48fa
2ec0842
 
 
 
 
 
aeec83c
2ec0842
 
 
 
 
 
 
 
 
 
 
 
17409c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1af48fa
 
 
73a667f
3b159d8
73a667f
3b159d8
1af48fa
 
 
 
60cf2f7
 
95ca783
 
1126d73
 
eb02b52
 
2ec0842
 
17409c4
 
1af48fa
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
import os
import re
import json
import httpx
import base64
import urllib.parse

from models import RequestModel
from utils import c35s, c3s, c3o, c3h, gem, BaseAPI

def encode_image(image_path):
  with open(image_path, "rb") as image_file:
    return base64.b64encode(image_file.read()).decode('utf-8')

async def get_doc_from_url(url):
    filename = urllib.parse.unquote(url.split("/")[-1])
    transport = httpx.AsyncHTTPTransport(
        http2=True,
        verify=False,
        retries=1
    )
    async with httpx.AsyncClient(transport=transport) as client:
        try:
            response = await client.get(
                url,
                timeout=30.0
            )
            with open(filename, 'wb') as f:
                f.write(response.content)

        except httpx.RequestError as e:
            print(f"An error occurred while requesting {e.request.url!r}.")

    return filename

async def get_encode_image(image_url):
    filename = await get_doc_from_url(image_url)
    image_path = os.getcwd() + "/" + filename
    base64_image = encode_image(image_path)
    if filename.endswith(".png"):
        prompt = f"data:image/png;base64,{base64_image}"
    else:
        prompt = f"data:image/jpeg;base64,{base64_image}"
    os.remove(image_path)
    return prompt

async def get_image_message(base64_image, engine = None):
    if base64_image.startswith("http"):
        base64_image = await get_encode_image(base64_image)
    colon_index = base64_image.index(":")
    semicolon_index = base64_image.index(";")
    image_type = base64_image[colon_index + 1:semicolon_index]

    if "gpt" == engine:
        return {
            "type": "image_url",
            "image_url": {
                "url": base64_image,
            }
        }
    if "claude" == engine or "vertex-claude" == engine:
        return {
            "type": "image",
            "source": {
                "type": "base64",
                "media_type": image_type,
                "data": base64_image.split(",")[1],
            }
        }
    if "gemini" == engine or "vertex-gemini" == engine:
        return {
            "inlineData": {
                "mimeType": image_type,
                "data": base64_image.split(",")[1],
            }
        }
    raise ValueError("Unknown engine")

async def get_text_message(role, message, engine = None):
    if "gpt" == engine or "claude" == engine or "openrouter" == engine or "vertex-claude" == engine or "o1" == engine:
        return {"type": "text", "text": message}
    if "gemini" == engine or "vertex-gemini" == engine:
        return {"text": message}
    if engine == "cloudflare":
        return message
    if engine == "cohere":
        return message
    raise ValueError("Unknown engine")

async def get_gemini_payload(request, engine, provider):
    headers = {
        'Content-Type': 'application/json'
    }
    model = provider['model'][request.model]
    gemini_stream = "streamGenerateContent"
    url = provider['base_url']
    if url.endswith("v1beta"):
        url = "https://generativelanguage.googleapis.com/v1beta/models/{model}:{stream}?key={api_key}".format(model=model, stream=gemini_stream, api_key=provider['api'].next())
    if url.endswith("v1"):
        url = "https://generativelanguage.googleapis.com/v1/models/{model}:{stream}?key={api_key}".format(model=model, stream=gemini_stream, api_key=provider['api'].next())

    messages = []
    systemInstruction = None
    function_arguments = None
    for msg in request.messages:
        if msg.role == "assistant":
            msg.role = "model"
        tool_calls = None
        if isinstance(msg.content, list):
            content = []
            for item in msg.content:
                if item.type == "text":
                    text_message = await get_text_message(msg.role, item.text, engine)
                    content.append(text_message)
                elif item.type == "image_url":
                    image_message = await get_image_message(item.image_url.url, engine)
                    content.append(image_message)
        else:
            content = [{"text": msg.content}]
            tool_calls = msg.tool_calls

        if tool_calls:
            tool_call = tool_calls[0]
            function_arguments = {
                "functionCall": {
                    "name": tool_call.function.name,
                    "args": json.loads(tool_call.function.arguments)
                }
            }
            messages.append(
                {
                    "role": "model",
                    "parts": [function_arguments]
                }
            )
        elif msg.role == "tool":
            function_call_name = function_arguments["functionCall"]["name"]
            messages.append(
                {
                    "role": "function",
                    "parts": [{
                    "functionResponse": {
                        "name": function_call_name,
                        "response": {
                            "name": function_call_name,
                            "content": {
                                "result": msg.content,
                            }
                        }
                    }
                    }]
                }
            )
        elif msg.role != "system":
            messages.append({"role": msg.role, "parts": content})
        elif msg.role == "system":
            content[0]["text"] = re.sub(r"_+", "_", content[0]["text"])
            systemInstruction = {"parts": content}


    payload = {
        "contents": messages,
        "safetySettings": [
            {
                "category": "HARM_CATEGORY_HARASSMENT",
                "threshold": "BLOCK_NONE"
            },
            {
                "category": "HARM_CATEGORY_HATE_SPEECH",
                "threshold": "BLOCK_NONE"
            },
            {
                "category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
                "threshold": "BLOCK_NONE"
            },
            {
                "category": "HARM_CATEGORY_DANGEROUS_CONTENT",
                "threshold": "BLOCK_NONE"
            }
        ]
    }
    if systemInstruction:
        payload["systemInstruction"] = systemInstruction

    miss_fields = [
        'model',
        'messages',
        'stream',
        'tool_choice',
        'temperature',
        'top_p',
        'max_tokens',
        'presence_penalty',
        'frequency_penalty',
        'n',
        'user',
        'include_usage',
        'logprobs',
        'top_logprobs'
    ]

    for field, value in request.model_dump(exclude_unset=True).items():
        if field not in miss_fields and value is not None:
            if field == "tools":
                payload.update({
                    "tools": [{
                        "function_declarations": [tool["function"] for tool in value]
                    }],
                    "tool_config": {
                        "function_calling_config": {
                            "mode": "AUTO"
                        }
                    }
                })
            else:
                payload[field] = value

    return url, headers, payload

import time
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.asymmetric import padding
from cryptography.hazmat.primitives.serialization import load_pem_private_key

def create_jwt(client_email, private_key):
    # JWT Header
    header = json.dumps({
        "alg": "RS256",
        "typ": "JWT"
    }).encode()

    # JWT Payload
    now = int(time.time())
    payload = json.dumps({
        "iss": client_email,
        "scope": "https://www.googleapis.com/auth/cloud-platform",
        "aud": "https://oauth2.googleapis.com/token",
        "exp": now + 3600,
        "iat": now
    }).encode()

    # Encode header and payload
    segments = [
        base64.urlsafe_b64encode(header).rstrip(b'='),
        base64.urlsafe_b64encode(payload).rstrip(b'=')
    ]

    # Create signature
    signing_input = b'.'.join(segments)
    private_key = load_pem_private_key(private_key.encode(), password=None)
    signature = private_key.sign(
        signing_input,
        padding.PKCS1v15(),
        hashes.SHA256()
    )

    segments.append(base64.urlsafe_b64encode(signature).rstrip(b'='))
    return b'.'.join(segments).decode()

def get_access_token(client_email, private_key):
    jwt = create_jwt(client_email, private_key)

    with httpx.Client() as client:
        response = client.post(
            "https://oauth2.googleapis.com/token",
            data={
                "grant_type": "urn:ietf:params:oauth:grant-type:jwt-bearer",
                "assertion": jwt
            },
            headers={'Content-Type': "application/x-www-form-urlencoded"}
        )
        response.raise_for_status()
        return response.json()["access_token"]

async def get_vertex_gemini_payload(request, engine, provider):
    headers = {
        'Content-Type': 'application/json'
    }
    if provider.get("client_email") and provider.get("private_key"):
        access_token = get_access_token(provider['client_email'], provider['private_key'])
        headers['Authorization'] = f"Bearer {access_token}"
    if provider.get("project_id"):
        project_id = provider.get("project_id")

    gemini_stream = "streamGenerateContent"
    model = provider['model'][request.model]
    location = gem
    url = "https://{LOCATION}-aiplatform.googleapis.com/v1/projects/{PROJECT_ID}/locations/{LOCATION}/publishers/google/models/{MODEL_ID}:{stream}".format(LOCATION=location.next(), PROJECT_ID=project_id, MODEL_ID=model, stream=gemini_stream)

    messages = []
    systemInstruction = None
    function_arguments = None
    for msg in request.messages:
        if msg.role == "assistant":
            msg.role = "model"
        tool_calls = None
        if isinstance(msg.content, list):
            content = []
            for item in msg.content:
                if item.type == "text":
                    text_message = await get_text_message(msg.role, item.text, engine)
                    content.append(text_message)
                elif item.type == "image_url":
                    image_message = await get_image_message(item.image_url.url, engine)
                    content.append(image_message)
        else:
            content = [{"text": msg.content}]
            tool_calls = msg.tool_calls

        if tool_calls:
            tool_call = tool_calls[0]
            function_arguments = {
                "functionCall": {
                    "name": tool_call.function.name,
                    "args": json.loads(tool_call.function.arguments)
                }
            }
            messages.append(
                {
                    "role": "model",
                    "parts": [function_arguments]
                }
            )
        elif msg.role == "tool":
            function_call_name = function_arguments["functionCall"]["name"]
            messages.append(
                {
                    "role": "function",
                    "parts": [{
                    "functionResponse": {
                        "name": function_call_name,
                        "response": {
                            "name": function_call_name,
                            "content": {
                                "result": msg.content,
                            }
                        }
                    }
                    }]
                }
            )
        elif msg.role != "system":
            messages.append({"role": msg.role, "parts": content})
        elif msg.role == "system":
            systemInstruction = {"parts": content}


    payload = {
        "contents": messages,
        # "safetySettings": [
        #     {
        #         "category": "HARM_CATEGORY_HARASSMENT",
        #         "threshold": "BLOCK_NONE"
        #     },
        #     {
        #         "category": "HARM_CATEGORY_HATE_SPEECH",
        #         "threshold": "BLOCK_NONE"
        #     },
        #     {
        #         "category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
        #         "threshold": "BLOCK_NONE"
        #     },
        #     {
        #         "category": "HARM_CATEGORY_DANGEROUS_CONTENT",
        #         "threshold": "BLOCK_NONE"
        #     }
        # ]
        "generationConfig": {
            "temperature": 0.5,
            "max_output_tokens": 8192,
            "top_k": 40,
            "top_p": 0.95
        },
    }
    if systemInstruction:
        payload["system_instruction"] = systemInstruction

    miss_fields = [
        'model',
        'messages',
        'stream',
        'tool_choice',
        'temperature',
        'top_p',
        'max_tokens',
        'presence_penalty',
        'frequency_penalty',
        'n',
        'user',
        'include_usage',
        'logprobs',
        'top_logprobs'
    ]

    for field, value in request.model_dump(exclude_unset=True).items():
        if field not in miss_fields and value is not None:
            if field == "tools":
                payload.update({
                    "tools": [{
                        "function_declarations": [tool["function"] for tool in value]
                    }],
                    "tool_config": {
                        "function_calling_config": {
                            "mode": "AUTO"
                        }
                    }
                })
            else:
                payload[field] = value

    return url, headers, payload

async def get_vertex_claude_payload(request, engine, provider):
    headers = {
        'Content-Type': 'application/json',
    }
    if provider.get("client_email") and provider.get("private_key"):
        access_token = get_access_token(provider['client_email'], provider['private_key'])
        headers['Authorization'] = f"Bearer {access_token}"
    if provider.get("project_id"):
        project_id = provider.get("project_id")

    model = provider['model'][request.model]
    if "claude-3-5-sonnet" in model:
        location = c35s
    elif "claude-3-opus" in model:
        location = c3o
    elif "claude-3-sonnet" in model:
        location = c3s
    elif "claude-3-haiku" in model:
        location = c3h

    claude_stream = "streamRawPredict"
    url = "https://{LOCATION}-aiplatform.googleapis.com/v1/projects/{PROJECT_ID}/locations/{LOCATION}/publishers/anthropic/models/{MODEL}:{stream}".format(LOCATION=location.next(), PROJECT_ID=project_id, MODEL=model, stream=claude_stream)

    messages = []
    system_prompt = None
    tool_id = None
    for msg in request.messages:
        tool_call_id = None
        tool_calls = None
        if isinstance(msg.content, list):
            content = []
            for item in msg.content:
                if item.type == "text":
                    text_message = await get_text_message(msg.role, item.text, engine)
                    content.append(text_message)
                elif item.type == "image_url":
                    image_message = await get_image_message(item.image_url.url, engine)
                    content.append(image_message)
        else:
            content = msg.content
            tool_calls = msg.tool_calls
            tool_id = tool_calls[0].id if tool_calls else None or tool_id
            tool_call_id = msg.tool_call_id

        if tool_calls:
            tool_calls_list = []
            tool_call = tool_calls[0]
            tool_calls_list.append({
                "type": "tool_use",
                "id": tool_call.id,
                "name": tool_call.function.name,
                "input": json.loads(tool_call.function.arguments),
            })
            messages.append({"role": msg.role, "content": tool_calls_list})
        elif tool_call_id:
            messages.append({"role": "user", "content": [{
                "type": "tool_result",
                "tool_use_id": tool_id,
                "content": content
            }]})
        elif msg.role == "function":
            messages.append({"role": "assistant", "content": [{
                "type": "tool_use",
                "id": "toolu_017r5miPMV6PGSNKmhvHPic4",
                "name": msg.name,
                "input": {"prompt": "..."}
            }]})
            messages.append({"role": "user", "content": [{
                "type": "tool_result",
                "tool_use_id": "toolu_017r5miPMV6PGSNKmhvHPic4",
                "content": msg.content
            }]})
        elif msg.role != "system":
            messages.append({"role": msg.role, "content": content})
        elif msg.role == "system":
            system_prompt = content

    conversation_len = len(messages) - 1
    message_index = 0
    while message_index < conversation_len:
        if messages[message_index]["role"] == messages[message_index + 1]["role"]:
            if messages[message_index].get("content"):
                if isinstance(messages[message_index]["content"], list):
                    messages[message_index]["content"].extend(messages[message_index + 1]["content"])
                elif isinstance(messages[message_index]["content"], str) and isinstance(messages[message_index + 1]["content"], list):
                    content_list = [{"type": "text", "text": messages[message_index]["content"]}]
                    content_list.extend(messages[message_index + 1]["content"])
                    messages[message_index]["content"] = content_list
                else:
                    messages[message_index]["content"] += messages[message_index + 1]["content"]
            messages.pop(message_index + 1)
            conversation_len = conversation_len - 1
        else:
            message_index = message_index + 1

    model = provider['model'][request.model]
    payload = {
        "anthropic_version": "vertex-2023-10-16",
        "messages": messages,
        "system": system_prompt or "You are Claude, a large language model trained by Anthropic.",
        "max_tokens": 8192 if "claude-3-5-sonnet" in model else 4096,
    }

    if request.max_tokens:
        payload["max_tokens"] = int(request.max_tokens)

    miss_fields = [
        'model',
        'messages',
        'presence_penalty',
        'frequency_penalty',
        'n',
        'user',
        'include_usage',
    ]

    for field, value in request.model_dump(exclude_unset=True).items():
        if field not in miss_fields and value is not None:
            payload[field] = value

    if request.tools and provider.get("tools"):
        tools = []
        for tool in request.tools:
            json_tool = await gpt2claude_tools_json(tool.dict()["function"])
            tools.append(json_tool)
        payload["tools"] = tools
        if "tool_choice" in payload:
            if isinstance(payload["tool_choice"], dict):
                if payload["tool_choice"]["type"] == "function":
                    payload["tool_choice"] = {
                        "type": "tool",
                        "name": payload["tool_choice"]["function"]["name"]
                    }
            if isinstance(payload["tool_choice"], str):
                if payload["tool_choice"] == "auto":
                    payload["tool_choice"] = {
                        "type": "auto"
                    }
                if payload["tool_choice"] == "none":
                    payload["tool_choice"] = {
                        "type": "any"
                    }

    if provider.get("tools") == False:
        payload.pop("tools", None)
        payload.pop("tool_choice", None)

    return url, headers, payload

async def get_gpt_payload(request, engine, provider):
    headers = {
        'Content-Type': 'application/json',
    }
    if provider.get("api"):
        headers['Authorization'] = f"Bearer {provider['api'].next()}"
    url = provider['base_url']

    messages = []
    for msg in request.messages:
        tool_calls = None
        tool_call_id = None
        if isinstance(msg.content, list):
            content = []
            for item in msg.content:
                if item.type == "text":
                    text_message = await get_text_message(msg.role, item.text, engine)
                    content.append(text_message)
                elif item.type == "image_url":
                    image_message = await get_image_message(item.image_url.url, engine)
                    content.append(image_message)
        else:
            content = msg.content
            tool_calls = msg.tool_calls
            tool_call_id = msg.tool_call_id

        if tool_calls:
            tool_calls_list = []
            for tool_call in tool_calls:
                tool_calls_list.append({
                    "id": tool_call.id,
                    "type": tool_call.type,
                    "function": {
                        "name": tool_call.function.name,
                        "arguments": tool_call.function.arguments
                    }
                })
                if provider.get("tools"):
                    messages.append({"role": msg.role, "tool_calls": tool_calls_list})
        elif tool_call_id:
            if provider.get("tools"):
                messages.append({"role": msg.role, "tool_call_id": tool_call_id, "content": content})
        else:
            messages.append({"role": msg.role, "content": content})

    model = provider['model'][request.model]
    payload = {
        "model": model,
        "messages": messages,
    }

    miss_fields = [
        'model',
        'messages'
    ]

    for field, value in request.model_dump(exclude_unset=True).items():
        if field not in miss_fields and value is not None:
            payload[field] = value

    if provider.get("tools") == False:
        payload.pop("tools", None)
        payload.pop("tool_choice", None)

    return url, headers, payload

async def get_openrouter_payload(request, engine, provider):
    headers = {
        'Content-Type': 'application/json'
    }
    if provider.get("api"):
        headers['Authorization'] = f"Bearer {provider['api'].next()}"

    url = provider['base_url']

    messages = []
    for msg in request.messages:
        name = None
        if isinstance(msg.content, list):
            content = []
            for item in msg.content:
                if item.type == "text":
                    text_message = await get_text_message(msg.role, item.text, engine)
                    content.append(text_message)
                elif item.type == "image_url":
                    image_message = await get_image_message(item.image_url.url, engine)
                    content.append(image_message)
        else:
            content = msg.content
            name = msg.name
        if name:
            messages.append({"role": msg.role, "name": name, "content": content})
        else:
            # print("content", content)
            if isinstance(content, list):
                for item in content:
                    if item["type"] == "text":
                        messages.append({"role": msg.role, "content": item["text"]})
                    elif item["type"] == "image_url":
                        messages.append({"role": msg.role, "content": item["url"]})
            else:
                messages.append({"role": msg.role, "content": content})

    model = provider['model'][request.model]
    payload = {
        "model": model,
        "messages": messages,
    }

    miss_fields = [
        'model',
        'messages',
        'tools',
        'tool_choice',
        'temperature',
        'top_p',
        'max_tokens',
        'presence_penalty',
        'frequency_penalty',
        'n',
        'user',
        'include_usage',
        'logprobs',
        'top_logprobs'
    ]

    for field, value in request.model_dump(exclude_unset=True).items():
        if field not in miss_fields and value is not None:
            payload[field] = value

    return url, headers, payload

async def get_cohere_payload(request, engine, provider):
    headers = {
        'Content-Type': 'application/json'
    }
    if provider.get("api"):
        headers['Authorization'] = f"Bearer {provider['api'].next()}"

    url = provider['base_url']

    role_map = {
        "user": "USER",
        "assistant" : "CHATBOT",
        "system": "SYSTEM"
    }

    messages = []
    for msg in request.messages:
        if isinstance(msg.content, list):
            content = []
            for item in msg.content:
                if item.type == "text":
                    text_message = await get_text_message(msg.role, item.text, engine)
                    content.append(text_message)
        else:
            content = msg.content

        if isinstance(content, list):
            for item in content:
                if item["type"] == "text":
                    messages.append({"role": role_map[msg.role], "message": item["text"]})
        else:
            messages.append({"role": role_map[msg.role], "message": content})

    model = provider['model'][request.model]
    chat_history = messages[:-1]
    query = messages[-1].get("message")
    payload = {
        "model": model,
        "message": query,
    }

    if chat_history:
        payload["chat_history"] = chat_history

    miss_fields = [
        'model',
        'messages',
        'tools',
        'tool_choice',
        'temperature',
        'top_p',
        'max_tokens',
        'presence_penalty',
        'frequency_penalty',
        'n',
        'user',
        'include_usage',
        'logprobs',
        'top_logprobs'
    ]

    for field, value in request.model_dump(exclude_unset=True).items():
        if field not in miss_fields and value is not None:
            payload[field] = value

    return url, headers, payload

async def get_cloudflare_payload(request, engine, provider):
    headers = {
        'Content-Type': 'application/json'
    }
    if provider.get("api"):
        headers['Authorization'] = f"Bearer {provider['api'].next()}"

    model = provider['model'][request.model]
    url = "https://api.cloudflare.com/client/v4/accounts/{cf_account_id}/ai/run/{cf_model_id}".format(cf_account_id=provider['cf_account_id'], cf_model_id=model)

    msg = request.messages[-1]
    messages = []
    content = None
    if isinstance(msg.content, list):
        for item in msg.content:
            if item.type == "text":
                content = await get_text_message(msg.role, item.text, engine)
    else:
        content = msg.content
        name = msg.name

    model = provider['model'][request.model]
    payload = {
        "prompt": content,
    }

    miss_fields = [
        'model',
        'messages',
        'tools',
        'tool_choice',
        'temperature',
        'top_p',
        'max_tokens',
        'presence_penalty',
        'frequency_penalty',
        'n',
        'user',
        'include_usage',
        'logprobs',
        'top_logprobs'
    ]

    for field, value in request.model_dump(exclude_unset=True).items():
        if field not in miss_fields and value is not None:
            payload[field] = value

    return url, headers, payload

async def get_o1_payload(request, engine, provider):
    headers = {
        'Content-Type': 'application/json'
    }
    if provider.get("api"):
        headers['Authorization'] = f"Bearer {provider['api'].next()}"

    url = provider['base_url']

    messages = []
    for msg in request.messages:
        if isinstance(msg.content, list):
            content = []
            for item in msg.content:
                if item.type == "text":
                    text_message = await get_text_message(msg.role, item.text, engine)
                    content.append(text_message)
        else:
            content = msg.content

        if isinstance(content, list) and msg.role != "system":
            for item in content:
                if item["type"] == "text":
                    messages.append({"role": msg.role, "content": item["text"]})
        elif msg.role != "system":
            messages.append({"role": msg.role, "content": content})

    model = provider['model'][request.model]
    payload = {
        "model": model,
        "messages": messages,
    }

    miss_fields = [
        'model',
        'messages',
        'tools',
        'tool_choice',
        'temperature',
        'top_p',
        'max_tokens',
        'presence_penalty',
        'frequency_penalty',
        'n',
        'user',
        'include_usage',
        'logprobs',
        'top_logprobs'
    ]

    for field, value in request.model_dump(exclude_unset=True).items():
        if field not in miss_fields and value is not None:
            payload[field] = value

    return url, headers, payload

async def gpt2claude_tools_json(json_dict):
    import copy
    json_dict = copy.deepcopy(json_dict)
    keys_to_change = {
        "parameters": "input_schema",
    }
    for old_key, new_key in keys_to_change.items():
        if old_key in json_dict:
            if new_key:
                if json_dict[old_key] == None:
                    json_dict[old_key] = {
                        "type": "object",
                        "properties": {}
                    }
                json_dict[new_key] = json_dict.pop(old_key)
            else:
                json_dict.pop(old_key)
    return json_dict

async def get_claude_payload(request, engine, provider):
    model = provider['model'][request.model]
    headers = {
        "content-type": "application/json",
        "x-api-key": f"{provider['api'].next()}",
        "anthropic-version": "2023-06-01",
        "anthropic-beta": "max-tokens-3-5-sonnet-2024-07-15" if "claude-3-5-sonnet" in model else "tools-2024-05-16",
    }
    url = provider['base_url']

    messages = []
    system_prompt = None
    tool_id = None
    for msg in request.messages:
        tool_call_id = None
        tool_calls = None
        if isinstance(msg.content, list):
            content = []
            for item in msg.content:
                if item.type == "text":
                    text_message = await get_text_message(msg.role, item.text, engine)
                    content.append(text_message)
                elif item.type == "image_url":
                    image_message = await get_image_message(item.image_url.url, engine)
                    content.append(image_message)
        else:
            content = msg.content
            tool_calls = msg.tool_calls
            tool_id = tool_calls[0].id if tool_calls else None or tool_id
            tool_call_id = msg.tool_call_id

        if tool_calls:
            tool_calls_list = []
            tool_call = tool_calls[0]
            tool_calls_list.append({
                "type": "tool_use",
                "id": tool_call.id,
                "name": tool_call.function.name,
                "input": json.loads(tool_call.function.arguments),
            })
            messages.append({"role": msg.role, "content": tool_calls_list})
        elif tool_call_id:
            messages.append({"role": "user", "content": [{
                "type": "tool_result",
                "tool_use_id": tool_id,
                "content": content
            }]})
        elif msg.role == "function":
            messages.append({"role": "assistant", "content": [{
                "type": "tool_use",
                "id": "toolu_017r5miPMV6PGSNKmhvHPic4",
                "name": msg.name,
                "input": {"prompt": "..."}
            }]})
            messages.append({"role": "user", "content": [{
                "type": "tool_result",
                "tool_use_id": "toolu_017r5miPMV6PGSNKmhvHPic4",
                "content": msg.content
            }]})
        elif msg.role != "system":
            messages.append({"role": msg.role, "content": content})
        elif msg.role == "system":
            system_prompt = content

    conversation_len = len(messages) - 1
    message_index = 0
    while message_index < conversation_len:
        if messages[message_index]["role"] == messages[message_index + 1]["role"]:
            if messages[message_index].get("content"):
                if isinstance(messages[message_index]["content"], list):
                    messages[message_index]["content"].extend(messages[message_index + 1]["content"])
                elif isinstance(messages[message_index]["content"], str) and isinstance(messages[message_index + 1]["content"], list):
                    content_list = [{"type": "text", "text": messages[message_index]["content"]}]
                    content_list.extend(messages[message_index + 1]["content"])
                    messages[message_index]["content"] = content_list
                else:
                    messages[message_index]["content"] += messages[message_index + 1]["content"]
            messages.pop(message_index + 1)
            conversation_len = conversation_len - 1
        else:
            message_index = message_index + 1

    model = provider['model'][request.model]
    payload = {
        "model": model,
        "messages": messages,
        "system": system_prompt or "You are Claude, a large language model trained by Anthropic.",
        "max_tokens": 8192 if "claude-3-5-sonnet" in model else 4096,
    }

    if request.max_tokens:
        payload["max_tokens"] = int(request.max_tokens)

    miss_fields = [
        'model',
        'messages',
        'presence_penalty',
        'frequency_penalty',
        'n',
        'user',
        'include_usage',
    ]

    for field, value in request.model_dump(exclude_unset=True).items():
        if field not in miss_fields and value is not None:
            payload[field] = value

    if request.tools and provider.get("tools"):
        tools = []
        for tool in request.tools:
            # print("tool", type(tool), tool)
            json_tool = await gpt2claude_tools_json(tool.dict()["function"])
            tools.append(json_tool)
        payload["tools"] = tools
        if "tool_choice" in payload:
            if isinstance(payload["tool_choice"], dict):
                if payload["tool_choice"]["type"] == "function":
                    payload["tool_choice"] = {
                        "type": "tool",
                        "name": payload["tool_choice"]["function"]["name"]
                    }
            if isinstance(payload["tool_choice"], str):
                if payload["tool_choice"] == "auto":
                    payload["tool_choice"] = {
                        "type": "auto"
                    }
                if payload["tool_choice"] == "none":
                    payload["tool_choice"] = {
                        "type": "any"
                    }

    if provider.get("tools") == False:
        payload.pop("tools", None)
        payload.pop("tool_choice", None)

    # print("payload", json.dumps(payload, indent=2, ensure_ascii=False))

    return url, headers, payload

async def get_dalle_payload(request, engine, provider):
    model = provider['model'][request.model]
    headers = {
        "Content-Type": "application/json",
    }
    if provider.get("api"):
        headers['Authorization'] = f"Bearer {provider['api'].next()}"
    url = provider['base_url']
    url = BaseAPI(url).image_url

    payload = {
        "model": model,
        "prompt": request.prompt,
        "n": request.n,
        "size": request.size
    }

    return url, headers, payload

async def get_whisper_payload(request, engine, provider):
    model = provider['model'][request.model]
    headers = {
        "Content-Type": "application/json",
    }
    if provider.get("api"):
        headers['Authorization'] = f"Bearer {provider['api'].next()}"
    url = provider['base_url']
    url = BaseAPI(url).audio_transcriptions

    payload = {
        "model": model,
        "file": request.file,
    }

    if request.prompt:
        payload["prompt"] = request.prompt
    if request.response_format:
        payload["response_format"] = request.response_format
    if request.temperature:
        payload["temperature"] = request.temperature
    if request.language:
        payload["language"] = request.language

    return url, headers, payload

async def get_payload(request: RequestModel, engine, provider):
    if engine == "gemini":
        return await get_gemini_payload(request, engine, provider)
    elif engine == "vertex-gemini":
        return await get_vertex_gemini_payload(request, engine, provider)
    elif engine == "vertex-claude":
        return await get_vertex_claude_payload(request, engine, provider)
    elif engine == "claude":
        return await get_claude_payload(request, engine, provider)
    elif engine == "gpt":
        return await get_gpt_payload(request, engine, provider)
    elif engine == "openrouter":
        return await get_openrouter_payload(request, engine, provider)
    elif engine == "cloudflare":
        return await get_cloudflare_payload(request, engine, provider)
    elif engine == "o1":
        return await get_o1_payload(request, engine, provider)
    elif engine == "cohere":
        return await get_cohere_payload(request, engine, provider)
    elif engine == "dalle":
        return await get_dalle_payload(request, engine, provider)
    elif engine == "whisper":
        return await get_whisper_payload(request, engine, provider)
    else:
        raise ValueError("Unknown payload")