#!/bin/sh printf "Running meta-llama/Llama-3.2-3B-Instruct using vLLM OpenAI compatible API Server at port %s\n" "7860" # Llama-3.2-3B-Instruct max context length is 131072, but we reduce it to 32k. # 32k tokens, 3/4 of 32k is 24k words, each page average is 500 or 0.5k words, # so that's basically 24k / .5k = 24 x 2 =~48 pages. # Because when we use maximum token length, it will be slower and the memory is not enough for T4. # https://github.com/vllm-project/vllm/blob/v0.6.4/vllm/config.py#L85-L86 # https://github.com/vllm-project/vllm/blob/v0.6.4/vllm/config.py#L98-L102 # [rank0]: raise ValueError( # [rank0]: ValueError: The model's max seq len (131072) # is larger than the maximum number of tokens that can be stored in KV cache (57056). # Try increasing `gpu_memory_utilization` or decreasing `max_model_len` when initializing the engine. # # Actually, the meta-llama/Llama-3.2-3B-Instruct rev 0cb88a4f764b7a12671c53f0838cd831a0843b95 # is enough with T4 16GB, but for the sake of the performance and comparing with the same # params with the sail/Sailor-1.8B-Chat, I use the # meta-llama/Llama-3.2-1B-Instruct rev 9213176726f574b556790deb65791e0c5aa438b6 python -u /app/openai_compatible_api_server.py \ --model meta-llama/Llama-3.2-3B-Instruct \ --revision 0cb88a4f764b7a12671c53f0838cd831a0843b95 \ --seed 42 \ --host 0.0.0.0 \ --port 7860 \ --max-num-batched-tokens 32768 \ --max-model-len 32768 \ --dtype float16 \ --gpu-memory-utilization 0.85