Spaces:
Paused
Paused
import asyncio | |
import importlib | |
import inspect | |
import multiprocessing | |
import os | |
import re | |
import signal | |
import socket | |
import tempfile | |
import uuid | |
from argparse import Namespace | |
from contextlib import asynccontextmanager | |
from functools import partial | |
from http import HTTPStatus | |
from typing import AsyncIterator, Optional, Set, Tuple | |
import uvloop | |
from fastapi import APIRouter, FastAPI, Request | |
from fastapi.exceptions import RequestValidationError | |
from fastapi.middleware.cors import CORSMiddleware | |
from fastapi.responses import JSONResponse, Response, StreamingResponse | |
from starlette.datastructures import State | |
from starlette.routing import Mount | |
from typing_extensions import assert_never | |
import vllm.envs as envs | |
from vllm.config import ModelConfig | |
from vllm.engine.arg_utils import AsyncEngineArgs | |
from vllm.engine.multiprocessing.client import MQLLMEngineClient | |
from vllm.engine.multiprocessing.engine import run_mp_engine | |
from vllm.engine.protocol import EngineClient | |
from vllm.entrypoints.launcher import serve_http | |
from vllm.entrypoints.logger import RequestLogger | |
from vllm.entrypoints.openai.cli_args import (make_arg_parser, | |
validate_parsed_serve_args) | |
# yapf conflicts with isort for this block | |
# yapf: disable | |
from vllm.entrypoints.openai.protocol import (ChatCompletionRequest, | |
ChatCompletionResponse, | |
CompletionRequest, | |
CompletionResponse, | |
DetokenizeRequest, | |
DetokenizeResponse, | |
EmbeddingRequest, | |
EmbeddingResponse, ErrorResponse, | |
LoadLoraAdapterRequest, | |
TokenizeRequest, | |
TokenizeResponse, | |
UnloadLoraAdapterRequest) | |
# yapf: enable | |
from vllm.entrypoints.openai.serving_chat import OpenAIServingChat | |
from vllm.entrypoints.openai.serving_completion import OpenAIServingCompletion | |
from vllm.entrypoints.openai.serving_embedding import OpenAIServingEmbedding | |
from vllm.entrypoints.openai.serving_engine import BaseModelPath, OpenAIServing | |
from vllm.entrypoints.openai.serving_tokenization import ( | |
OpenAIServingTokenization) | |
from vllm.entrypoints.openai.tool_parsers import ToolParserManager | |
from vllm.logger import init_logger | |
from vllm.usage.usage_lib import UsageContext | |
from vllm.utils import (FlexibleArgumentParser, get_open_zmq_ipc_path, | |
is_valid_ipv6_address) | |
from vllm.version import __version__ as VLLM_VERSION | |
if envs.VLLM_USE_V1: | |
from vllm.v1.engine.async_llm import AsyncLLMEngine # type: ignore | |
else: | |
from vllm.engine.async_llm_engine import AsyncLLMEngine # type: ignore | |
TIMEOUT_KEEP_ALIVE = 5 # seconds | |
prometheus_multiproc_dir: tempfile.TemporaryDirectory | |
# Cannot use __name__ (https://github.com/vllm-project/vllm/pull/4765) | |
logger = init_logger('vllm.entrypoints.openai.api_server') | |
_running_tasks: Set[asyncio.Task] = set() | |
async def lifespan(app: FastAPI): | |
try: | |
if app.state.log_stats: | |
engine_client: EngineClient = app.state.engine_client | |
async def _force_log(): | |
while True: | |
await asyncio.sleep(10.) | |
await engine_client.do_log_stats() | |
task = asyncio.create_task(_force_log()) | |
_running_tasks.add(task) | |
task.add_done_callback(_running_tasks.remove) | |
else: | |
task = None | |
try: | |
yield | |
finally: | |
if task is not None: | |
task.cancel() | |
finally: | |
# Ensure app state including engine ref is gc'd | |
del app.state | |
async def build_async_engine_client( | |
args: Namespace) -> AsyncIterator[EngineClient]: | |
# Context manager to handle engine_client lifecycle | |
# Ensures everything is shutdown and cleaned up on error/exit | |
engine_args = AsyncEngineArgs.from_cli_args(args) | |
async with build_async_engine_client_from_engine_args( | |
engine_args, args.disable_frontend_multiprocessing) as engine: | |
yield engine | |
async def build_async_engine_client_from_engine_args( | |
engine_args: AsyncEngineArgs, | |
disable_frontend_multiprocessing: bool = False, | |
) -> AsyncIterator[EngineClient]: | |
""" | |
Create EngineClient, either: | |
- in-process using the AsyncLLMEngine Directly | |
- multiprocess using AsyncLLMEngine RPC | |
Returns the Client or None if the creation failed. | |
""" | |
# Fall back | |
# TODO: fill out feature matrix. | |
if (MQLLMEngineClient.is_unsupported_config(engine_args) | |
or envs.VLLM_USE_V1 or disable_frontend_multiprocessing): | |
engine_config = engine_args.create_engine_config() | |
uses_ray = getattr(AsyncLLMEngine._get_executor_cls(engine_config), | |
"uses_ray", False) | |
build_engine = partial(AsyncLLMEngine.from_engine_args, | |
engine_args=engine_args, | |
engine_config=engine_config, | |
usage_context=UsageContext.OPENAI_API_SERVER) | |
if uses_ray: | |
# Must run in main thread with ray for its signal handlers to work | |
engine_client = build_engine() | |
else: | |
engine_client = await asyncio.get_running_loop().run_in_executor( | |
None, build_engine) | |
yield engine_client | |
if hasattr(engine_client, "shutdown"): | |
engine_client.shutdown() | |
return | |
# Otherwise, use the multiprocessing AsyncLLMEngine. | |
else: | |
if "PROMETHEUS_MULTIPROC_DIR" not in os.environ: | |
# Make TemporaryDirectory for prometheus multiprocessing | |
# Note: global TemporaryDirectory will be automatically | |
# cleaned up upon exit. | |
global prometheus_multiproc_dir | |
prometheus_multiproc_dir = tempfile.TemporaryDirectory() | |
os.environ[ | |
"PROMETHEUS_MULTIPROC_DIR"] = prometheus_multiproc_dir.name | |
else: | |
logger.warning( | |
"Found PROMETHEUS_MULTIPROC_DIR was set by user. " | |
"This directory must be wiped between vLLM runs or " | |
"you will find inaccurate metrics. Unset the variable " | |
"and vLLM will properly handle cleanup.") | |
# Select random path for IPC. | |
ipc_path = get_open_zmq_ipc_path() | |
logger.info("Multiprocessing frontend to use %s for IPC Path.", | |
ipc_path) | |
# Start RPCServer in separate process (holds the LLMEngine). | |
# the current process might have CUDA context, | |
# so we need to spawn a new process | |
context = multiprocessing.get_context("spawn") | |
# The Process can raise an exception during startup, which may | |
# not actually result in an exitcode being reported. As a result | |
# we use a shared variable to communicate the information. | |
engine_alive = multiprocessing.Value('b', True, lock=False) | |
engine_process = context.Process(target=run_mp_engine, | |
args=(engine_args, | |
UsageContext.OPENAI_API_SERVER, | |
ipc_path, engine_alive)) | |
engine_process.start() | |
engine_pid = engine_process.pid | |
assert engine_pid is not None, "Engine process failed to start." | |
logger.info("Started engine process with PID %d", engine_pid) | |
# Build RPCClient, which conforms to EngineClient Protocol. | |
engine_config = engine_args.create_engine_config() | |
build_client = partial(MQLLMEngineClient, ipc_path, engine_config, | |
engine_pid) | |
mq_engine_client = await asyncio.get_running_loop().run_in_executor( | |
None, build_client) | |
try: | |
while True: | |
try: | |
await mq_engine_client.setup() | |
break | |
except TimeoutError: | |
if (not engine_process.is_alive() | |
or not engine_alive.value): | |
raise RuntimeError( | |
"Engine process failed to start. See stack " | |
"trace for the root cause.") from None | |
yield mq_engine_client # type: ignore[misc] | |
finally: | |
# Ensure rpc server process was terminated | |
engine_process.terminate() | |
# Close all open connections to the backend | |
mq_engine_client.close() | |
# Wait for engine process to join | |
engine_process.join(4) | |
if engine_process.exitcode is None: | |
# Kill if taking longer than 5 seconds to stop | |
engine_process.kill() | |
# Lazy import for prometheus multiprocessing. | |
# We need to set PROMETHEUS_MULTIPROC_DIR environment variable | |
# before prometheus_client is imported. | |
# See https://prometheus.github.io/client_python/multiprocess/ | |
from prometheus_client import multiprocess | |
multiprocess.mark_process_dead(engine_process.pid) | |
router = APIRouter() | |
def mount_metrics(app: FastAPI): | |
# Lazy import for prometheus multiprocessing. | |
# We need to set PROMETHEUS_MULTIPROC_DIR environment variable | |
# before prometheus_client is imported. | |
# See https://prometheus.github.io/client_python/multiprocess/ | |
from prometheus_client import (CollectorRegistry, make_asgi_app, | |
multiprocess) | |
prometheus_multiproc_dir_path = os.getenv("PROMETHEUS_MULTIPROC_DIR", None) | |
if prometheus_multiproc_dir_path is not None: | |
logger.info("vLLM to use %s as PROMETHEUS_MULTIPROC_DIR", | |
prometheus_multiproc_dir_path) | |
registry = CollectorRegistry() | |
multiprocess.MultiProcessCollector(registry) | |
# Add prometheus asgi middleware to route /metrics requests | |
metrics_route = Mount("/metrics", make_asgi_app(registry=registry)) | |
else: | |
# Add prometheus asgi middleware to route /metrics requests | |
metrics_route = Mount("/metrics", make_asgi_app()) | |
# Workaround for 307 Redirect for /metrics | |
metrics_route.path_regex = re.compile("^/metrics(?P<path>.*)$") | |
app.routes.append(metrics_route) | |
def base(request: Request) -> OpenAIServing: | |
# Reuse the existing instance | |
return tokenization(request) | |
def chat(request: Request) -> Optional[OpenAIServingChat]: | |
return request.app.state.openai_serving_chat | |
def completion(request: Request) -> Optional[OpenAIServingCompletion]: | |
return request.app.state.openai_serving_completion | |
def embedding(request: Request) -> Optional[OpenAIServingEmbedding]: | |
return request.app.state.openai_serving_embedding | |
def tokenization(request: Request) -> OpenAIServingTokenization: | |
return request.app.state.openai_serving_tokenization | |
def engine_client(request: Request) -> EngineClient: | |
return request.app.state.engine_client | |
async def health(raw_request: Request) -> Response: | |
"""Health check.""" | |
await engine_client(raw_request).check_health() | |
return Response(status_code=200) | |
async def tokenize(request: TokenizeRequest, raw_request: Request): | |
handler = tokenization(raw_request) | |
generator = await handler.create_tokenize(request) | |
if isinstance(generator, ErrorResponse): | |
return JSONResponse(content=generator.model_dump(), | |
status_code=generator.code) | |
elif isinstance(generator, TokenizeResponse): | |
return JSONResponse(content=generator.model_dump()) | |
assert_never(generator) | |
async def detokenize(request: DetokenizeRequest, raw_request: Request): | |
handler = tokenization(raw_request) | |
generator = await handler.create_detokenize(request) | |
if isinstance(generator, ErrorResponse): | |
return JSONResponse(content=generator.model_dump(), | |
status_code=generator.code) | |
elif isinstance(generator, DetokenizeResponse): | |
return JSONResponse(content=generator.model_dump()) | |
assert_never(generator) | |
async def show_available_models(raw_request: Request): | |
handler = base(raw_request) | |
models = await handler.show_available_models() | |
return JSONResponse(content=models.model_dump()) | |
async def show_version(): | |
ver = {"version": VLLM_VERSION} | |
return JSONResponse(content=ver) | |
async def create_chat_completion(request: ChatCompletionRequest, | |
raw_request: Request): | |
handler = chat(raw_request) | |
if handler is None: | |
return base(raw_request).create_error_response( | |
message="The model does not support Chat Completions API") | |
generator = await handler.create_chat_completion(request, raw_request) | |
if isinstance(generator, ErrorResponse): | |
return JSONResponse(content=generator.model_dump(), | |
status_code=generator.code) | |
elif isinstance(generator, ChatCompletionResponse): | |
return JSONResponse(content=generator.model_dump()) | |
return StreamingResponse(content=generator, media_type="text/event-stream") | |
async def create_completion(request: CompletionRequest, raw_request: Request): | |
handler = completion(raw_request) | |
if handler is None: | |
return base(raw_request).create_error_response( | |
message="The model does not support Completions API") | |
generator = await handler.create_completion(request, raw_request) | |
if isinstance(generator, ErrorResponse): | |
return JSONResponse(content=generator.model_dump(), | |
status_code=generator.code) | |
elif isinstance(generator, CompletionResponse): | |
return JSONResponse(content=generator.model_dump()) | |
return StreamingResponse(content=generator, media_type="text/event-stream") | |
async def create_embedding(request: EmbeddingRequest, raw_request: Request): | |
handler = embedding(raw_request) | |
if handler is None: | |
return base(raw_request).create_error_response( | |
message="The model does not support Embeddings API") | |
generator = await handler.create_embedding(request, raw_request) | |
if isinstance(generator, ErrorResponse): | |
return JSONResponse(content=generator.model_dump(), | |
status_code=generator.code) | |
elif isinstance(generator, EmbeddingResponse): | |
return JSONResponse(content=generator.model_dump()) | |
assert_never(generator) | |
if envs.VLLM_TORCH_PROFILER_DIR: | |
logger.warning( | |
"Torch Profiler is enabled in the API server. This should ONLY be " | |
"used for local development!") | |
async def start_profile(raw_request: Request): | |
logger.info("Starting profiler...") | |
await engine_client(raw_request).start_profile() | |
logger.info("Profiler started.") | |
return Response(status_code=200) | |
async def stop_profile(raw_request: Request): | |
logger.info("Stopping profiler...") | |
await engine_client(raw_request).stop_profile() | |
logger.info("Profiler stopped.") | |
return Response(status_code=200) | |
if envs.VLLM_ALLOW_RUNTIME_LORA_UPDATING: | |
logger.warning( | |
"Lora dynamic loading & unloading is enabled in the API server. " | |
"This should ONLY be used for local development!") | |
async def load_lora_adapter(request: LoadLoraAdapterRequest, | |
raw_request: Request): | |
for route in [chat, completion, embedding]: | |
handler = route(raw_request) | |
if handler is not None: | |
response = await handler.load_lora_adapter(request) | |
if isinstance(response, ErrorResponse): | |
return JSONResponse(content=response.model_dump(), | |
status_code=response.code) | |
return Response(status_code=200, content=response) | |
async def unload_lora_adapter(request: UnloadLoraAdapterRequest, | |
raw_request: Request): | |
for route in [chat, completion, embedding]: | |
handler = route(raw_request) | |
if handler is not None: | |
response = await handler.unload_lora_adapter(request) | |
if isinstance(response, ErrorResponse): | |
return JSONResponse(content=response.model_dump(), | |
status_code=response.code) | |
return Response(status_code=200, content=response) | |
def build_app(args: Namespace) -> FastAPI: | |
if args.disable_fastapi_docs: | |
app = FastAPI(openapi_url=None, | |
docs_url=None, | |
redoc_url=None, | |
lifespan=lifespan) | |
else: | |
app = FastAPI(lifespan=lifespan) | |
app.include_router(router) | |
app.root_path = args.root_path | |
mount_metrics(app) | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=args.allowed_origins, | |
allow_credentials=args.allow_credentials, | |
allow_methods=args.allowed_methods, | |
allow_headers=args.allowed_headers, | |
) | |
async def validation_exception_handler(_, exc): | |
chat = app.state.openai_serving_chat | |
err = chat.create_error_response(message=str(exc)) | |
return JSONResponse(err.model_dump(), | |
status_code=HTTPStatus.BAD_REQUEST) | |
if token := envs.VLLM_API_KEY or args.api_key: | |
async def authentication(request: Request, call_next): | |
root_path = "" if args.root_path is None else args.root_path | |
if request.method == "OPTIONS": | |
return await call_next(request) | |
if not request.url.path.startswith(f"{root_path}/v1"): | |
return await call_next(request) | |
if request.headers.get("Authorization") != "Bearer " + token: | |
return JSONResponse(content={"error": "Unauthorized"}, | |
status_code=401) | |
return await call_next(request) | |
async def add_request_id(request: Request, call_next): | |
request_id = request.headers.get("X-Request-Id") or uuid.uuid4().hex | |
response = await call_next(request) | |
response.headers["X-Request-Id"] = request_id | |
return response | |
for middleware in args.middleware: | |
module_path, object_name = middleware.rsplit(".", 1) | |
imported = getattr(importlib.import_module(module_path), object_name) | |
if inspect.isclass(imported): | |
app.add_middleware(imported) | |
elif inspect.iscoroutinefunction(imported): | |
app.middleware("http")(imported) | |
else: | |
raise ValueError(f"Invalid middleware {middleware}. " | |
f"Must be a function or a class.") | |
return app | |
def init_app_state( | |
engine_client: EngineClient, | |
model_config: ModelConfig, | |
state: State, | |
args: Namespace, | |
) -> None: | |
if args.served_model_name is not None: | |
served_model_names = args.served_model_name | |
else: | |
served_model_names = [args.model] | |
if args.disable_log_requests: | |
request_logger = None | |
else: | |
request_logger = RequestLogger(max_log_len=args.max_log_len) | |
base_model_paths = [ | |
BaseModelPath(name=name, model_path=args.model) | |
for name in served_model_names | |
] | |
state.engine_client = engine_client | |
state.log_stats = not args.disable_log_stats | |
state.openai_serving_chat = OpenAIServingChat( | |
engine_client, | |
model_config, | |
base_model_paths, | |
args.response_role, | |
lora_modules=args.lora_modules, | |
prompt_adapters=args.prompt_adapters, | |
request_logger=request_logger, | |
chat_template=args.chat_template, | |
return_tokens_as_token_ids=args.return_tokens_as_token_ids, | |
enable_auto_tools=args.enable_auto_tool_choice, | |
tool_parser=args.tool_call_parser, | |
enable_prompt_tokens_details=args.enable_prompt_tokens_details, | |
) if model_config.task == "generate" else None | |
state.openai_serving_completion = OpenAIServingCompletion( | |
engine_client, | |
model_config, | |
base_model_paths, | |
lora_modules=args.lora_modules, | |
prompt_adapters=args.prompt_adapters, | |
request_logger=request_logger, | |
return_tokens_as_token_ids=args.return_tokens_as_token_ids, | |
) if model_config.task == "generate" else None | |
state.openai_serving_embedding = OpenAIServingEmbedding( | |
engine_client, | |
model_config, | |
base_model_paths, | |
request_logger=request_logger, | |
chat_template=args.chat_template, | |
) if model_config.task == "embedding" else None | |
state.openai_serving_tokenization = OpenAIServingTokenization( | |
engine_client, | |
model_config, | |
base_model_paths, | |
lora_modules=args.lora_modules, | |
request_logger=request_logger, | |
chat_template=args.chat_template, | |
) | |
def create_server_socket(addr: Tuple[str, int]) -> socket.socket: | |
family = socket.AF_INET | |
if is_valid_ipv6_address(addr[0]): | |
family = socket.AF_INET6 | |
sock = socket.socket(family=family, type=socket.SOCK_STREAM) | |
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) | |
sock.bind(addr) | |
return sock | |
async def run_server(args, **uvicorn_kwargs) -> None: | |
logger.info("vLLM API server version %s", VLLM_VERSION) | |
logger.info("args: %s", args) | |
if args.tool_parser_plugin and len(args.tool_parser_plugin) > 3: | |
ToolParserManager.import_tool_parser(args.tool_parser_plugin) | |
valide_tool_parses = ToolParserManager.tool_parsers.keys() | |
if args.enable_auto_tool_choice \ | |
and args.tool_call_parser not in valide_tool_parses: | |
raise KeyError(f"invalid tool call parser: {args.tool_call_parser} " | |
f"(chose from {{ {','.join(valide_tool_parses)} }})") | |
# workaround to make sure that we bind the port before the engine is set up. | |
# This avoids race conditions with ray. | |
# see https://github.com/vllm-project/vllm/issues/8204 | |
sock_addr = (args.host or "", args.port) | |
sock = create_server_socket(sock_addr) | |
def signal_handler(*_) -> None: | |
# Interrupt server on sigterm while initializing | |
raise KeyboardInterrupt("terminated") | |
signal.signal(signal.SIGTERM, signal_handler) | |
async with build_async_engine_client(args) as engine_client: | |
app = build_app(args) | |
model_config = await engine_client.get_model_config() | |
init_app_state(engine_client, model_config, app.state, args) | |
shutdown_task = await serve_http( | |
app, | |
host=args.host, | |
port=args.port, | |
log_level=args.uvicorn_log_level, | |
timeout_keep_alive=TIMEOUT_KEEP_ALIVE, | |
ssl_keyfile=args.ssl_keyfile, | |
ssl_certfile=args.ssl_certfile, | |
ssl_ca_certs=args.ssl_ca_certs, | |
ssl_cert_reqs=args.ssl_cert_reqs, | |
**uvicorn_kwargs, | |
) | |
# NB: Await server shutdown only after the backend context is exited | |
await shutdown_task | |
sock.close() | |
if __name__ == "__main__": | |
# NOTE(simon): | |
# This section should be in sync with vllm/scripts.py for CLI entrypoints. | |
parser = FlexibleArgumentParser( | |
description="vLLM OpenAI-Compatible RESTful API server.") | |
parser = make_arg_parser(parser) | |
args = parser.parse_args() | |
validate_parsed_serve_args(args) | |
uvloop.run(run_server(args)) | |