Spaces:
Running
on
Zero
Running
on
Zero
da03
commited on
Commit
·
eaa0586
1
Parent(s):
521b575
app.py
CHANGED
@@ -2,6 +2,7 @@ import spaces
|
|
2 |
import torch
|
3 |
import gradio as gr
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
5 |
|
6 |
model_name = 'yuntian-deng/gpt2-implicit-cot-multiplication'
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
@@ -18,41 +19,43 @@ def postprocess(raw_output):
|
|
18 |
|
19 |
@spaces.GPU
|
20 |
def predict_product(num1, num2):
|
21 |
-
# Reverse input digits and add spaces
|
22 |
input_text = f'{preprocess(num1)} * {preprocess(num2)} ='
|
23 |
-
|
24 |
inputs = tokenizer(input_text, return_tensors='pt').to('cuda' if torch.cuda.is_available() else 'cpu')
|
25 |
model.to('cuda' if torch.cuda.is_available() else 'cpu')
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
raw_output = tokenizer.decode(output, skip_special_tokens=True)
|
32 |
-
prediction = postprocess(raw_output)
|
33 |
|
34 |
-
# Evaluate the correctness of the result
|
35 |
try:
|
36 |
num1_int = int(num1)
|
37 |
num2_int = int(num2)
|
38 |
-
|
39 |
except ValueError:
|
40 |
valid_input = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
if valid_input:
|
42 |
-
|
43 |
-
try:
|
44 |
-
prediction_int = int(prediction)
|
45 |
-
is_correct = (prediction_int == correct_product)
|
46 |
-
except ValueError:
|
47 |
-
is_correct = False
|
48 |
-
result_color = "green" if is_correct else "red"
|
49 |
result_message = "Correct!" if is_correct else f"Incorrect! The correct product is {correct_product}."
|
50 |
else:
|
51 |
-
result_color = "black"
|
52 |
result_message = "Invalid input. Could not evaluate correctness."
|
53 |
-
result_html = f"<div style='color: {result_color};'>{result_message}</div>"
|
54 |
|
55 |
-
|
56 |
|
57 |
demo = gr.Interface(
|
58 |
fn=predict_product,
|
@@ -61,7 +64,7 @@ demo = gr.Interface(
|
|
61 |
gr.Textbox(label='Second Number (up to 12 digits)', value='67890'),
|
62 |
],
|
63 |
outputs=[
|
64 |
-
gr.
|
65 |
gr.HTML(label='Result Message')
|
66 |
],
|
67 |
title='GPT2 Direct Multiplication Calculator (Without Using Chain-of-Thought)',
|
@@ -73,7 +76,7 @@ demo = gr.Interface(
|
|
73 |
""",
|
74 |
clear_btn=None,
|
75 |
submit_btn="Multiply!",
|
76 |
-
live=
|
77 |
)
|
78 |
|
79 |
demo.launch()
|
|
|
2 |
import torch
|
3 |
import gradio as gr
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
+
import time
|
6 |
|
7 |
model_name = 'yuntian-deng/gpt2-implicit-cot-multiplication'
|
8 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
19 |
|
20 |
@spaces.GPU
|
21 |
def predict_product(num1, num2):
|
|
|
22 |
input_text = f'{preprocess(num1)} * {preprocess(num2)} ='
|
|
|
23 |
inputs = tokenizer(input_text, return_tensors='pt').to('cuda' if torch.cuda.is_available() else 'cpu')
|
24 |
model.to('cuda' if torch.cuda.is_available() else 'cpu')
|
25 |
|
26 |
+
generated_ids = inputs['input_ids']
|
27 |
+
prediction = ""
|
28 |
+
correct_product = ""
|
29 |
+
valid_input = True
|
|
|
|
|
30 |
|
|
|
31 |
try:
|
32 |
num1_int = int(num1)
|
33 |
num2_int = int(num2)
|
34 |
+
correct_product = str(num1_int * num2_int)
|
35 |
except ValueError:
|
36 |
valid_input = False
|
37 |
+
|
38 |
+
for _ in range(40): # Adjust the range to control the maximum number of generated tokens
|
39 |
+
outputs = model.generate(generated_ids, max_new_tokens=1, do_sample=False)
|
40 |
+
generated_ids = torch.cat((generated_ids, outputs[:, -1:]), dim=-1)
|
41 |
+
output_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
42 |
+
prediction = postprocess(output_text)
|
43 |
+
|
44 |
+
result_html = "<div style='margin-bottom: 10px;'>Correct Result: " + " ".join(correct_product) + "</div><div>"
|
45 |
+
for i, pred_digit in enumerate(prediction):
|
46 |
+
color = "green" if i < len(correct_product) and pred_digit == correct_product[i] else "red"
|
47 |
+
result_html += f"<span style='color: {color};'>{pred_digit}</span>"
|
48 |
+
result_html += "</div>"
|
49 |
+
|
50 |
+
yield result_html, ""
|
51 |
+
|
52 |
if valid_input:
|
53 |
+
is_correct = prediction == correct_product
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
result_message = "Correct!" if is_correct else f"Incorrect! The correct product is {correct_product}."
|
55 |
else:
|
|
|
56 |
result_message = "Invalid input. Could not evaluate correctness."
|
|
|
57 |
|
58 |
+
yield result_html, result_message
|
59 |
|
60 |
demo = gr.Interface(
|
61 |
fn=predict_product,
|
|
|
64 |
gr.Textbox(label='Second Number (up to 12 digits)', value='67890'),
|
65 |
],
|
66 |
outputs=[
|
67 |
+
gr.HTML(label='Predicted Product with Matching Digits Highlighted'),
|
68 |
gr.HTML(label='Result Message')
|
69 |
],
|
70 |
title='GPT2 Direct Multiplication Calculator (Without Using Chain-of-Thought)',
|
|
|
76 |
""",
|
77 |
clear_btn=None,
|
78 |
submit_btn="Multiply!",
|
79 |
+
live=True
|
80 |
)
|
81 |
|
82 |
demo.launch()
|