yuna0x0's picture
build: cleanup
f45b35d unverified
import argparse
import functools
import pathlib
import os
import subprocess
import tarfile
if os.environ.get("SYSTEM") == "spaces":
import mim
mim.uninstall("mmcv-full", confirm_yes=True)
subprocess.call("mim install mmcv-full==1.6.2".split())
subprocess.call("pip uninstall -y opencv-python".split())
subprocess.call("pip uninstall -y opencv-python-headless".split())
subprocess.call("pip install opencv-python-headless==4.7.0.72".split())
import cv2
import gradio as gr
import huggingface_hub
import numpy as np
import PIL.Image
import anime_face_detector
def load_sample_image_paths():
image_dir = pathlib.Path("images")
if not image_dir.exists():
dataset_repo = "hysts/sample-images-TADNE"
path = huggingface_hub.hf_hub_download(
dataset_repo, "images.tar.gz", repo_type="dataset"
)
with tarfile.open(path) as f:
f.extractall()
return sorted(image_dir.glob("*"))
def detect(
img,
face_score_threshold: float,
landmark_score_threshold: float,
detector: anime_face_detector.LandmarkDetector,
) -> PIL.Image.Image:
if not img:
return None
image = cv2.imread(img)
preds = detector(image)
res = image.copy()
for pred in preds:
box = pred["bbox"]
box, score = box[:4], box[4]
if score < face_score_threshold:
continue
box = np.round(box).astype(int)
lt = max(2, int(3 * (box[2:] - box[:2]).max() / 256))
cv2.rectangle(res, tuple(box[:2]), tuple(box[2:]), (0, 255, 0), lt)
pred_pts = pred["keypoints"]
for *pt, score in pred_pts:
if score < landmark_score_threshold:
color = (0, 255, 255)
else:
color = (0, 0, 255)
pt = np.round(pt).astype(int)
cv2.circle(res, tuple(pt), lt, color, cv2.FILLED)
res = cv2.cvtColor(res, cv2.COLOR_BGR2RGB)
image_pil = PIL.Image.fromarray(res)
return image_pil
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--detector", type=str, default="yolov3", choices=["yolov3", "faster-rcnn"]
)
parser.add_argument("--device", type=str, default="cpu", choices=["cuda:0", "cpu"])
parser.add_argument("--face-score-threshold", type=float, default=0.5)
parser.add_argument("--landmark-score-threshold", type=float, default=0.3)
parser.add_argument("--score-slider-step", type=float, default=0.05)
parser.add_argument("--port", type=int)
parser.add_argument("--debug", action="store_true")
parser.add_argument("--share", action="store_true")
parser.add_argument("--live", action="store_true")
args = parser.parse_args()
image_paths = load_sample_image_paths()
examples = [[path.as_posix(), 0.5, 0.3] for path in image_paths]
detector = anime_face_detector.create_detector(args.detector, device=args.device)
func = functools.partial(detect, detector=detector)
title = "edisonlee55/hysts-anime-face-detector"
description = "Demo for edisonlee55/hysts-anime-face-detector. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
article = "<a href='https://github.com/edisonlee55/hysts-anime-face-detector'>GitHub Repo</a>"
gr.Interface(
func,
[
gr.Image(type="filepath", label="Input"),
gr.Slider(
0,
1,
step=args.score_slider_step,
value=args.face_score_threshold,
label="Face Score Threshold",
),
gr.Slider(
0,
1,
step=args.score_slider_step,
value=args.landmark_score_threshold,
label="Landmark Score Threshold",
),
],
gr.Image(type="pil", label="Output"),
title=title,
description=description,
article=article,
examples=examples,
live=args.live,
).launch(debug=args.debug, share=args.share, server_port=args.port)
if __name__ == "__main__":
main()