Spaces:
Runtime error
Runtime error
File size: 2,163 Bytes
906e212 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
import pathlib
import torch
from .detector import LandmarkDetector
def get_config_path(model_name: str) -> pathlib.Path:
assert model_name in ['faster-rcnn', 'yolov3', 'hrnetv2']
package_path = pathlib.Path(__file__).parent.resolve()
if model_name in ['faster-rcnn', 'yolov3']:
config_dir = package_path / 'configs' / 'mmdet'
else:
config_dir = package_path / 'configs' / 'mmpose'
return config_dir / f'{model_name}.py'
def get_checkpoint_path(model_name: str) -> pathlib.Path:
assert model_name in ['faster-rcnn', 'yolov3', 'hrnetv2']
if model_name in ['faster-rcnn', 'yolov3']:
file_name = f'mmdet_anime-face_{model_name}.pth'
else:
file_name = f'mmpose_anime-face_{model_name}.pth'
model_dir = pathlib.Path(torch.hub.get_dir()) / 'checkpoints'
model_dir.mkdir(exist_ok=True, parents=True)
model_path = model_dir / file_name
if not model_path.exists():
url = f'https://github.com/hysts/anime-face-detector/releases/download/v0.0.1/{file_name}'
torch.hub.download_url_to_file(url, model_path.as_posix())
return model_path
def create_detector(face_detector_name: str = 'yolov3',
landmark_model_name='hrnetv2',
device: str = 'cuda:0',
flip_test: bool = True,
box_scale_factor: float = 1.1) -> LandmarkDetector:
assert face_detector_name in ['yolov3', 'faster-rcnn']
assert landmark_model_name in ['hrnetv2']
detector_config_path = get_config_path(face_detector_name)
landmark_config_path = get_config_path(landmark_model_name)
detector_checkpoint_path = get_checkpoint_path(face_detector_name)
landmark_checkpoint_path = get_checkpoint_path(landmark_model_name)
model = LandmarkDetector(landmark_config_path,
landmark_checkpoint_path,
detector_config_path,
detector_checkpoint_path,
device=device,
flip_test=flip_test,
box_scale_factor=box_scale_factor)
return model
|