File size: 2,658 Bytes
d38a282 cf4c48f 9cb991d d38a282 e062fc1 d38a282 9cb991d d38a282 9cb991d db4b928 9cb991d d38a282 9cb991d d38a282 cb47bac d38a282 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>Gradio-Lite: Serverless Gradio Running Entirely in Your Browser</title>
<meta name="description" content="Gradio-Lite: Serverless Gradio Running Entirely in Your Browser">
<script type="module" crossorigin src="https://cdn.jsdelivr.net/npm/@gradio/lite/dist/lite.js"></script>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/@gradio/lite/dist/lite.css" />
<style>
html, body {
margin: 0;
padding: 0;
height: 100%;
}
</style>
</head>
<body>
<gradio-lite>
<gradio-file name="app.py" entrypoint>
import gradio as gr
from transformers_js_py import pipeline
from filters import convert
pipe = await pipeline('object-detection', 'Xenova/detr-resnet-50')
async def fn(image):
result = await pipe(image)
return result
#demo = gr.Interface.from_pipeline(pipe)
async def predict(image):
result = await pipe(image)
print(result)
result = convert(result)
print(result)
return image, result
demo = gr.Interface(
fn=predict,
inputs=gr.Image(type='pil'),
outputs=gr.AnnotatedImage(),
title='On-Device Object-Detection with Gradio-Lite'
)
demo.launch()
</gradio-file>
<gradio-file name="filters.py">
def convert(input_data):
# Initialize the output list
result_labels = []
# Iterate over each item in the input data
for item in input_data:
# Extract the label
label = item['label']
# Extract the bounding box coordinates
xmin = item['box']['xmin']
ymin = item['box']['ymin']
xmax = item['box']['xmax']
ymax = item['box']['ymax']
# Convert coordinates into the required output format (list of coordinates)
coordinates = [xmin, ymin, xmax, ymax]
# Append the tuple of coordinates and label to the output list
result_labels.append((coordinates, label))
# Return the output list
return result_labels
</gradio-file>
<gradio-file name="lion.jpg" url="https://raw.githubusercontent.com/gradio-app/gradio/main/gradio/test_data/lion.jpg" />
<gradio-file name="logo.png" url="https://raw.githubusercontent.com/gradio-app/gradio/main/guides/assets/logo.png" />
<gradio-requirements>
# Same syntax as requirements.txt
transformers-js-py
</gradio-requirements>
</gradio-lite>
</body>
</html> |