File size: 2,658 Bytes
d38a282
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf4c48f
9cb991d
d38a282
e062fc1
d38a282
9cb991d
 
 
 
 
d38a282
9cb991d
 
 
 
 
 
 
 
 
 
 
db4b928
9cb991d
 
d38a282
 
 
 
9cb991d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d38a282
 
 
 
 
 
 
 
cb47bac
d38a282
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
<!DOCTYPE html>
<html>
    <head>
        <meta charset="utf-8">
        <meta name="viewport" content="width=device-width, initial-scale=1">
        <title>Gradio-Lite: Serverless Gradio Running Entirely in Your Browser</title>
        <meta name="description" content="Gradio-Lite: Serverless Gradio Running Entirely in Your Browser">

        <script type="module" crossorigin src="https://cdn.jsdelivr.net/npm/@gradio/lite/dist/lite.js"></script>
        <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/@gradio/lite/dist/lite.css" />

        <style>
            html, body {
                margin: 0;
                padding: 0;
                height: 100%;
            }
        </style>
    </head>
    <body>
        <gradio-lite>
            <gradio-file name="app.py" entrypoint>
import gradio as gr
from transformers_js_py import pipeline
from filters import convert

pipe = await pipeline('object-detection', 'Xenova/detr-resnet-50')

async def fn(image):
	result = await pipe(image)
	return result
              
#demo = gr.Interface.from_pipeline(pipe)

async def predict(image):
  result = await pipe(image)
  print(result)
  result = convert(result)
  print(result) 
  return image, result

demo = gr.Interface(
  fn=predict,
  inputs=gr.Image(type='pil'),
  outputs=gr.AnnotatedImage(),
  title='On-Device Object-Detection with Gradio-Lite'
)
         
demo.launch()
            </gradio-file>

            <gradio-file name="filters.py">
def convert(input_data):
    # Initialize the output list
    result_labels = []

    # Iterate over each item in the input data
    for item in input_data:
        # Extract the label
        label = item['label']
        
        # Extract the bounding box coordinates
        xmin = item['box']['xmin']
        ymin = item['box']['ymin']
        xmax = item['box']['xmax']
        ymax = item['box']['ymax']

        # Convert coordinates into the required output format (list of coordinates)
        coordinates = [xmin, ymin, xmax, ymax]

        # Append the tuple of coordinates and label to the output list
        result_labels.append((coordinates, label))

    # Return the output list
    return result_labels

            </gradio-file>

            <gradio-file name="lion.jpg" url="https://raw.githubusercontent.com/gradio-app/gradio/main/gradio/test_data/lion.jpg" />
            <gradio-file name="logo.png" url="https://raw.githubusercontent.com/gradio-app/gradio/main/guides/assets/logo.png" />

            <gradio-requirements>
# Same syntax as requirements.txt
transformers-js-py            
            </gradio-requirements>
        </gradio-lite>
    </body>
</html>