Spaces:
Running
on
Zero
Running
on
Zero
wzhouxiff
commited on
Commit
·
ed2f607
1
Parent(s):
399e1c1
rm app copy.py
Browse files- app copy.py +0 -740
app copy.py
DELETED
@@ -1,740 +0,0 @@
|
|
1 |
-
try:
|
2 |
-
import spaces
|
3 |
-
except:
|
4 |
-
pass
|
5 |
-
|
6 |
-
import os
|
7 |
-
import gradio as gr
|
8 |
-
|
9 |
-
import torch
|
10 |
-
from gradio_image_prompter import ImagePrompter
|
11 |
-
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
12 |
-
from omegaconf import OmegaConf
|
13 |
-
from PIL import Image
|
14 |
-
import numpy as np
|
15 |
-
from copy import deepcopy
|
16 |
-
import cv2
|
17 |
-
|
18 |
-
import torch.nn.functional as F
|
19 |
-
import torchvision
|
20 |
-
from einops import rearrange
|
21 |
-
import tempfile
|
22 |
-
|
23 |
-
from objctrl_2_5d.utils.ui_utils import process_image, get_camera_pose, get_subject_points, get_points, undo_points, mask_image
|
24 |
-
from ZoeDepth.zoedepth.utils.misc import colorize
|
25 |
-
|
26 |
-
from cameractrl.inference import get_pipeline
|
27 |
-
from objctrl_2_5d.utils.examples import examples, sync_points
|
28 |
-
|
29 |
-
from objctrl_2_5d.utils.objmask_util import RT2Plucker, Unprojected, roll_with_ignore_multidim, dilate_mask_pytorch
|
30 |
-
from objctrl_2_5d.utils.filter_utils import get_freq_filter, freq_mix_3d
|
31 |
-
|
32 |
-
|
33 |
-
### Title and Description ###
|
34 |
-
#### Description ####
|
35 |
-
title = r"""<h1 align="center">ObjCtrl-2.5D: Training-free Object Control with Camera Poses</h1>"""
|
36 |
-
# subtitle = r"""<h2 align="center">Deployed on SVD Generation</h2>"""
|
37 |
-
important_link = r"""
|
38 |
-
<div align='center'>
|
39 |
-
<a href='https://wzhouxiff.github.io/projects/MotionCtrl/assets/paper/MotionCtrl.pdf'>[Paper]</a>
|
40 |
-
  <a href='https://wzhouxiff.github.io/projects/MotionCtrl/'>[Project Page]</a>
|
41 |
-
  <a href='https://github.com/TencentARC/MotionCtrl'>[Code]</a>
|
42 |
-
</div>
|
43 |
-
"""
|
44 |
-
|
45 |
-
authors = r"""
|
46 |
-
<div align='center'>
|
47 |
-
<a href='https://wzhouxiff.github.io/'>Zhouxia Wang</a>
|
48 |
-
  <a href='https://nirvanalan.github.io/'>Yushi Lan</a>
|
49 |
-
  <a href='https://shangchenzhou.com/'>Shanchen Zhou</a>
|
50 |
-
  <a href='https://www.mmlab-ntu.com/person/ccloy/index.html'>Chen Change Loy</a>
|
51 |
-
</div>
|
52 |
-
"""
|
53 |
-
|
54 |
-
affiliation = r"""
|
55 |
-
<div align='center'>
|
56 |
-
<a href='https://www.mmlab-ntu.com/'>S-Lab, NTU Singapore</a>
|
57 |
-
</div>
|
58 |
-
"""
|
59 |
-
|
60 |
-
description = r"""
|
61 |
-
<b>Official Gradio demo</b> for <a href='https://github.com/TencentARC/MotionCtrl' target='_blank'><b>ObjCtrl-2.5D: Training-free Object Control with Camera Poses</b></a>.<br>
|
62 |
-
🔥 ObjCtrl2.5D enables object motion control in a I2V generated video via transforming 2D trajectories to 3D using depth, subsequently converting them into camera poses,
|
63 |
-
thereby leveraging the exisitng camera motion control module for object motion control without requiring additional training.<br>
|
64 |
-
"""
|
65 |
-
|
66 |
-
article = r"""
|
67 |
-
If ObjCtrl2.5D is helpful, please help to ⭐ the <a href='https://github.com/TencentARC/MotionCtrl' target='_blank'>Github Repo</a>. Thanks!
|
68 |
-
[![GitHub Stars](https://img.shields.io/github/stars/TencentARC%2FMotionCtrl
|
69 |
-
)](https://github.com/TencentARC/MotionCtrl)
|
70 |
-
|
71 |
-
---
|
72 |
-
|
73 |
-
📝 **Citation**
|
74 |
-
<br>
|
75 |
-
If our work is useful for your research, please consider citing:
|
76 |
-
```bibtex
|
77 |
-
@inproceedings{wang2024motionctrl,
|
78 |
-
title={Motionctrl: A unified and flexible motion controller for video generation},
|
79 |
-
author={Wang, Zhouxia and Yuan, Ziyang and Wang, Xintao and Li, Yaowei and Chen, Tianshui and Xia, Menghan and Luo, Ping and Shan, Ying},
|
80 |
-
booktitle={ACM SIGGRAPH 2024 Conference Papers},
|
81 |
-
pages={1--11},
|
82 |
-
year={2024}
|
83 |
-
}
|
84 |
-
```
|
85 |
-
|
86 |
-
📧 **Contact**
|
87 |
-
<br>
|
88 |
-
If you have any questions, please feel free to reach me out at <b>[email protected]</b>.
|
89 |
-
|
90 |
-
"""
|
91 |
-
|
92 |
-
# -------------- initialization --------------
|
93 |
-
|
94 |
-
CAMERA_MODE = ["Traj2Cam", "Rotate", "Clockwise", "Translate"]
|
95 |
-
|
96 |
-
# select the device for computation
|
97 |
-
if torch.cuda.is_available():
|
98 |
-
device = torch.device("cuda")
|
99 |
-
elif torch.backends.mps.is_available():
|
100 |
-
device = torch.device("mps")
|
101 |
-
else:
|
102 |
-
device = torch.device("cpu")
|
103 |
-
print(f"using device: {device}")
|
104 |
-
|
105 |
-
# segmentation model
|
106 |
-
segmentor = SAM2ImagePredictor.from_pretrained("facebook/sam2-hiera-tiny", cache_dir="ckpt", device=device)
|
107 |
-
|
108 |
-
# depth model
|
109 |
-
d_model_NK = torch.hub.load('./ZoeDepth', 'ZoeD_NK', source='local', pretrained=True).to(device)
|
110 |
-
|
111 |
-
# cameractrl model
|
112 |
-
config = "configs/svd_320_576_cameractrl.yaml"
|
113 |
-
model_id = "stabilityai/stable-video-diffusion-img2vid"
|
114 |
-
ckpt = "checkpoints/CameraCtrl_svd.ckpt"
|
115 |
-
if not os.path.exists(ckpt):
|
116 |
-
os.makedirs("checkpoints", exist_ok=True)
|
117 |
-
os.system("wget -c https://huggingface.co/hehao13/CameraCtrl_SVD_ckpts/resolve/main/CameraCtrl_svd.ckpt?download=true")
|
118 |
-
os.system("mv CameraCtrl_svd.ckpt?download=true checkpoints/CameraCtrl_svd.ckpt")
|
119 |
-
model_config = OmegaConf.load(config)
|
120 |
-
|
121 |
-
|
122 |
-
pipeline = get_pipeline(model_id, "unet", model_config['down_block_types'], model_config['up_block_types'],
|
123 |
-
model_config['pose_encoder_kwargs'], model_config['attention_processor_kwargs'],
|
124 |
-
ckpt, True, device)
|
125 |
-
|
126 |
-
# segmentor = None
|
127 |
-
# d_model_NK = None
|
128 |
-
# pipeline = None
|
129 |
-
|
130 |
-
### run the demo ##
|
131 |
-
# @spaces.GPU(duration=5)
|
132 |
-
def segment(canvas, image, logits):
|
133 |
-
if logits is not None:
|
134 |
-
logits *= 32.0
|
135 |
-
_, points = get_subject_points(canvas)
|
136 |
-
image = np.array(image)
|
137 |
-
|
138 |
-
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
|
139 |
-
segmentor.set_image(image)
|
140 |
-
input_points = []
|
141 |
-
input_boxes = []
|
142 |
-
for p in points:
|
143 |
-
[x1, y1, _, x2, y2, _] = p
|
144 |
-
if x2==0 and y2==0:
|
145 |
-
input_points.append([x1, y1])
|
146 |
-
else:
|
147 |
-
input_boxes.append([x1, y1, x2, y2])
|
148 |
-
if len(input_points) == 0:
|
149 |
-
input_points = None
|
150 |
-
input_labels = None
|
151 |
-
else:
|
152 |
-
input_points = np.array(input_points)
|
153 |
-
input_labels = np.ones(len(input_points))
|
154 |
-
if len(input_boxes) == 0:
|
155 |
-
input_boxes = None
|
156 |
-
else:
|
157 |
-
input_boxes = np.array(input_boxes)
|
158 |
-
masks, _, logits = segmentor.predict(
|
159 |
-
point_coords=input_points,
|
160 |
-
point_labels=input_labels,
|
161 |
-
box=input_boxes,
|
162 |
-
multimask_output=False,
|
163 |
-
return_logits=True,
|
164 |
-
mask_input=logits,
|
165 |
-
)
|
166 |
-
mask = masks > 0
|
167 |
-
masked_img = mask_image(image, mask[0], color=[252, 140, 90], alpha=0.9)
|
168 |
-
masked_img = Image.fromarray(masked_img)
|
169 |
-
|
170 |
-
return mask[0], masked_img, masked_img, logits / 32.0
|
171 |
-
|
172 |
-
# @spaces.GPU(duration=5)
|
173 |
-
def get_depth(image, points):
|
174 |
-
|
175 |
-
depth = d_model_NK.infer_pil(image)
|
176 |
-
colored_depth = colorize(depth, cmap='gray_r') # [h, w, 4] 0-255
|
177 |
-
|
178 |
-
depth_img = deepcopy(colored_depth[:, :, :3])
|
179 |
-
if len(points) > 0:
|
180 |
-
for idx, point in enumerate(points):
|
181 |
-
if idx % 2 == 0:
|
182 |
-
cv2.circle(depth_img, tuple(point), 10, (255, 0, 0), -1)
|
183 |
-
else:
|
184 |
-
cv2.circle(depth_img, tuple(point), 10, (0, 0, 255), -1)
|
185 |
-
if idx > 0:
|
186 |
-
cv2.arrowedLine(depth_img, points[idx-1], points[idx], (255, 255, 255), 4, tipLength=0.5)
|
187 |
-
|
188 |
-
return depth, depth_img, colored_depth[:, :, :3]
|
189 |
-
|
190 |
-
|
191 |
-
# @spaces.GPU(duration=80)
|
192 |
-
def run_objctrl_2_5d(condition_image,
|
193 |
-
mask,
|
194 |
-
depth,
|
195 |
-
RTs,
|
196 |
-
bg_mode,
|
197 |
-
shared_wapring_latents,
|
198 |
-
scale_wise_masks,
|
199 |
-
rescale,
|
200 |
-
seed,
|
201 |
-
ds, dt,
|
202 |
-
num_inference_steps=25):
|
203 |
-
|
204 |
-
DEBUG = False
|
205 |
-
|
206 |
-
if DEBUG:
|
207 |
-
cur_OUTPUT_PATH = 'outputs/tmp'
|
208 |
-
os.makedirs(cur_OUTPUT_PATH, exist_ok=True)
|
209 |
-
|
210 |
-
# num_inference_steps=25
|
211 |
-
min_guidance_scale = 1.0
|
212 |
-
max_guidance_scale = 3.0
|
213 |
-
|
214 |
-
area_ratio = 0.3
|
215 |
-
depth_scale_ = 5.2
|
216 |
-
center_margin = 10
|
217 |
-
|
218 |
-
height, width = 320, 576
|
219 |
-
num_frames = 14
|
220 |
-
|
221 |
-
intrinsics = np.array([[float(width), float(width), float(width) / 2, float(height) / 2]])
|
222 |
-
intrinsics = np.repeat(intrinsics, num_frames, axis=0) # [n_frame, 4]
|
223 |
-
fx = intrinsics[0, 0] / width
|
224 |
-
fy = intrinsics[0, 1] / height
|
225 |
-
cx = intrinsics[0, 2] / width
|
226 |
-
cy = intrinsics[0, 3] / height
|
227 |
-
|
228 |
-
down_scale = 8
|
229 |
-
H, W = height // down_scale, width // down_scale
|
230 |
-
K = np.array([[width / down_scale, 0, W / 2], [0, width / down_scale, H / 2], [0, 0, 1]])
|
231 |
-
|
232 |
-
seed = int(seed)
|
233 |
-
|
234 |
-
center_h_margin, center_w_margin = center_margin, center_margin
|
235 |
-
depth_center = np.mean(depth[height//2-center_h_margin:height//2+center_h_margin, width//2-center_w_margin:width//2+center_w_margin])
|
236 |
-
|
237 |
-
if rescale > 0:
|
238 |
-
depth_rescale = round(depth_scale_ * rescale / depth_center, 2)
|
239 |
-
else:
|
240 |
-
depth_rescale = 1.0
|
241 |
-
|
242 |
-
depth = depth * depth_rescale
|
243 |
-
|
244 |
-
depth_down = F.interpolate(torch.tensor(depth).unsqueeze(0).unsqueeze(0),
|
245 |
-
(H, W), mode='bilinear', align_corners=False).squeeze().numpy() # [H, W]
|
246 |
-
|
247 |
-
## latent
|
248 |
-
generator = torch.Generator()
|
249 |
-
generator.manual_seed(seed)
|
250 |
-
|
251 |
-
latents_org = pipeline.prepare_latents(
|
252 |
-
1,
|
253 |
-
14,
|
254 |
-
8,
|
255 |
-
height,
|
256 |
-
width,
|
257 |
-
pipeline.dtype,
|
258 |
-
device,
|
259 |
-
generator,
|
260 |
-
None,
|
261 |
-
)
|
262 |
-
latents_org = latents_org / pipeline.scheduler.init_noise_sigma
|
263 |
-
|
264 |
-
cur_plucker_embedding, _, _ = RT2Plucker(RTs, RTs.shape[0], (height, width), fx, fy, cx, cy) # 6, V, H, W
|
265 |
-
cur_plucker_embedding = cur_plucker_embedding.to(device)
|
266 |
-
cur_plucker_embedding = cur_plucker_embedding[None, ...] # b 6 f h w
|
267 |
-
cur_plucker_embedding = cur_plucker_embedding.permute(0, 2, 1, 3, 4) # b f 6 h w
|
268 |
-
cur_plucker_embedding = cur_plucker_embedding[:, :num_frames, ...]
|
269 |
-
cur_pose_features = pipeline.pose_encoder(cur_plucker_embedding)
|
270 |
-
|
271 |
-
# bg_mode = ["Fixed", "Reverse", "Free"]
|
272 |
-
if bg_mode == "Fixed":
|
273 |
-
fix_RTs = np.repeat(RTs[0][None, ...], num_frames, axis=0) # [n_frame, 4, 3]
|
274 |
-
fix_plucker_embedding, _, _ = RT2Plucker(fix_RTs, num_frames, (height, width), fx, fy, cx, cy) # 6, V, H, W
|
275 |
-
fix_plucker_embedding = fix_plucker_embedding.to(device)
|
276 |
-
fix_plucker_embedding = fix_plucker_embedding[None, ...] # b 6 f h w
|
277 |
-
fix_plucker_embedding = fix_plucker_embedding.permute(0, 2, 1, 3, 4) # b f 6 h w
|
278 |
-
fix_plucker_embedding = fix_plucker_embedding[:, :num_frames, ...]
|
279 |
-
fix_pose_features = pipeline.pose_encoder(fix_plucker_embedding)
|
280 |
-
|
281 |
-
elif bg_mode == "Reverse":
|
282 |
-
bg_plucker_embedding, _, _ = RT2Plucker(RTs[::-1], RTs.shape[0], (height, width), fx, fy, cx, cy) # 6, V, H, W
|
283 |
-
bg_plucker_embedding = bg_plucker_embedding.to(device)
|
284 |
-
bg_plucker_embedding = bg_plucker_embedding[None, ...] # b 6 f h w
|
285 |
-
bg_plucker_embedding = bg_plucker_embedding.permute(0, 2, 1, 3, 4) # b f 6 h w
|
286 |
-
bg_plucker_embedding = bg_plucker_embedding[:, :num_frames, ...]
|
287 |
-
fix_pose_features = pipeline.pose_encoder(bg_plucker_embedding)
|
288 |
-
|
289 |
-
else:
|
290 |
-
fix_pose_features = None
|
291 |
-
|
292 |
-
#### preparing mask
|
293 |
-
|
294 |
-
mask = Image.fromarray(mask)
|
295 |
-
mask = mask.resize((W, H))
|
296 |
-
mask = np.array(mask).astype(np.float32)
|
297 |
-
mask = np.expand_dims(mask, axis=-1)
|
298 |
-
|
299 |
-
# visulize mask
|
300 |
-
if DEBUG:
|
301 |
-
mask_sum_vis = mask[..., 0]
|
302 |
-
mask_sum_vis = (mask_sum_vis * 255.0).astype(np.uint8)
|
303 |
-
mask_sum_vis = Image.fromarray(mask_sum_vis)
|
304 |
-
|
305 |
-
mask_sum_vis.save(f'{cur_OUTPUT_PATH}/org_mask.png')
|
306 |
-
|
307 |
-
try:
|
308 |
-
warped_masks = Unprojected(mask, depth_down, RTs, H=H, W=W, K=K)
|
309 |
-
|
310 |
-
warped_masks.insert(0, mask)
|
311 |
-
|
312 |
-
except:
|
313 |
-
# mask to bbox
|
314 |
-
print(f'!!! Mask is too small to warp; mask to bbox')
|
315 |
-
mask = mask[:, :, 0]
|
316 |
-
coords = cv2.findNonZero(mask)
|
317 |
-
x, y, w, h = cv2.boundingRect(coords)
|
318 |
-
# mask[y:y+h, x:x+w] = 1.0
|
319 |
-
|
320 |
-
center_x, center_y = x + w // 2, y + h // 2
|
321 |
-
center_z = depth_down[center_y, center_x]
|
322 |
-
|
323 |
-
# RTs [n_frame, 3, 4] to [n_frame, 4, 4] , add [0, 0, 0, 1]
|
324 |
-
RTs = np.concatenate([RTs, np.array([[[0, 0, 0, 1]]] * num_frames)], axis=1)
|
325 |
-
|
326 |
-
# RTs: world to camera
|
327 |
-
P0 = np.array([center_x, center_y, 1])
|
328 |
-
Pc0 = np.linalg.inv(K) @ P0 * center_z
|
329 |
-
pw = np.linalg.inv(RTs[0]) @ np.array([Pc0[0], Pc0[1], center_z, 1]) # [4]
|
330 |
-
|
331 |
-
P = [np.array([center_x, center_y])]
|
332 |
-
for i in range(1, num_frames):
|
333 |
-
Pci = RTs[i] @ pw
|
334 |
-
Pi = K @ Pci[:3] / Pci[2]
|
335 |
-
P.append(Pi[:2])
|
336 |
-
|
337 |
-
warped_masks = [mask]
|
338 |
-
for i in range(1, num_frames):
|
339 |
-
shift_x = int(round(P[i][0] - P[0][0]))
|
340 |
-
shift_y = int(round(P[i][1] - P[0][1]))
|
341 |
-
|
342 |
-
cur_mask = roll_with_ignore_multidim(mask, [shift_y, shift_x])
|
343 |
-
warped_masks.append(cur_mask)
|
344 |
-
|
345 |
-
|
346 |
-
warped_masks = [v[..., None] for v in warped_masks]
|
347 |
-
|
348 |
-
warped_masks = np.stack(warped_masks, axis=0) # [f, h, w]
|
349 |
-
warped_masks = np.repeat(warped_masks, 3, axis=-1) # [f, h, w, 3]
|
350 |
-
|
351 |
-
mask_sum = np.sum(warped_masks, axis=0, keepdims=True) # [1, H, W, 3]
|
352 |
-
mask_sum[mask_sum > 1.0] = 1.0
|
353 |
-
mask_sum = mask_sum[0,:,:, 0]
|
354 |
-
|
355 |
-
if DEBUG:
|
356 |
-
## visulize warp mask
|
357 |
-
warp_masks_vis = torch.tensor(warped_masks)
|
358 |
-
warp_masks_vis = (warp_masks_vis * 255.0).to(torch.uint8)
|
359 |
-
torchvision.io.write_video(f'{cur_OUTPUT_PATH}/warped_masks.mp4', warp_masks_vis, fps=10, video_codec='h264', options={'crf': '10'})
|
360 |
-
|
361 |
-
# visulize mask
|
362 |
-
mask_sum_vis = mask_sum
|
363 |
-
mask_sum_vis = (mask_sum_vis * 255.0).astype(np.uint8)
|
364 |
-
mask_sum_vis = Image.fromarray(mask_sum_vis)
|
365 |
-
|
366 |
-
mask_sum_vis.save(f'{cur_OUTPUT_PATH}/merged_mask.png')
|
367 |
-
|
368 |
-
if scale_wise_masks:
|
369 |
-
min_area = H * W * area_ratio # cal in downscale
|
370 |
-
non_zero_len = mask_sum.sum()
|
371 |
-
|
372 |
-
print(f'non_zero_len: {non_zero_len}, min_area: {min_area}')
|
373 |
-
|
374 |
-
if non_zero_len > min_area:
|
375 |
-
kernel_sizes = [1, 1, 1, 3]
|
376 |
-
elif non_zero_len > min_area * 0.5:
|
377 |
-
kernel_sizes = [3, 1, 1, 5]
|
378 |
-
else:
|
379 |
-
kernel_sizes = [5, 3, 3, 7]
|
380 |
-
else:
|
381 |
-
kernel_sizes = [1, 1, 1, 1]
|
382 |
-
|
383 |
-
mask = torch.from_numpy(mask_sum) # [h, w]
|
384 |
-
mask = mask[None, None, ...] # [1, 1, h, w]
|
385 |
-
mask = F.interpolate(mask, (height, width), mode='bilinear', align_corners=False) # [1, 1, H, W]
|
386 |
-
# mask = mask.repeat(1, num_frames, 1, 1) # [1, f, H, W]
|
387 |
-
mask = mask.to(pipeline.dtype).to(device)
|
388 |
-
|
389 |
-
##### Mask End ######
|
390 |
-
|
391 |
-
### Got blending pose features Start ###
|
392 |
-
|
393 |
-
pose_features = []
|
394 |
-
for i in range(0, len(cur_pose_features)):
|
395 |
-
kernel_size = kernel_sizes[i]
|
396 |
-
h, w = cur_pose_features[i].shape[-2:]
|
397 |
-
|
398 |
-
if fix_pose_features is None:
|
399 |
-
pose_features.append(torch.zeros_like(cur_pose_features[i]))
|
400 |
-
else:
|
401 |
-
pose_features.append(fix_pose_features[i])
|
402 |
-
|
403 |
-
cur_mask = F.interpolate(mask, (h, w), mode='bilinear', align_corners=False)
|
404 |
-
cur_mask = dilate_mask_pytorch(cur_mask, kernel_size=kernel_size) # [1, 1, H, W]
|
405 |
-
cur_mask = cur_mask.repeat(1, num_frames, 1, 1) # [1, f, H, W]
|
406 |
-
|
407 |
-
if DEBUG:
|
408 |
-
# visulize mask
|
409 |
-
mask_vis = cur_mask[0, 0].cpu().numpy() * 255.0
|
410 |
-
mask_vis = Image.fromarray(mask_vis.astype(np.uint8))
|
411 |
-
mask_vis.save(f'{cur_OUTPUT_PATH}/mask_k{kernel_size}_scale{i}.png')
|
412 |
-
|
413 |
-
cur_mask = cur_mask[None, ...] # [1, 1, f, H, W]
|
414 |
-
pose_features[-1] = cur_pose_features[i] * cur_mask + pose_features[-1] * (1 - cur_mask)
|
415 |
-
|
416 |
-
### Got blending pose features End ###
|
417 |
-
|
418 |
-
##### Warp Noise Start ######
|
419 |
-
|
420 |
-
if shared_wapring_latents:
|
421 |
-
noise = latents_org[0, 0].data.cpu().numpy().copy() #[14, 4, 40, 72]
|
422 |
-
noise = np.transpose(noise, (1, 2, 0)) # [40, 72, 4]
|
423 |
-
|
424 |
-
try:
|
425 |
-
warp_noise = Unprojected(noise, depth_down, RTs, H=H, W=W, K=K)
|
426 |
-
warp_noise.insert(0, noise)
|
427 |
-
except:
|
428 |
-
print(f'!!! Noise is too small to warp; mask to bbox')
|
429 |
-
|
430 |
-
warp_noise = [noise]
|
431 |
-
for i in range(1, num_frames):
|
432 |
-
shift_x = int(round(P[i][0] - P[0][0]))
|
433 |
-
shift_y = int(round(P[i][1] - P[0][1]))
|
434 |
-
|
435 |
-
cur_noise= roll_with_ignore_multidim(noise, [shift_y, shift_x])
|
436 |
-
warp_noise.append(cur_noise)
|
437 |
-
|
438 |
-
warp_noise = np.stack(warp_noise, axis=0) # [f, h, w, 4]
|
439 |
-
|
440 |
-
if DEBUG:
|
441 |
-
## visulize warp noise
|
442 |
-
warp_noise_vis = torch.tensor(warp_noise)[..., :3] * torch.tensor(warped_masks)
|
443 |
-
warp_noise_vis = (warp_noise_vis - warp_noise_vis.min()) / (warp_noise_vis.max() - warp_noise_vis.min())
|
444 |
-
warp_noise_vis = (warp_noise_vis * 255.0).to(torch.uint8)
|
445 |
-
|
446 |
-
torchvision.io.write_video(f'{cur_OUTPUT_PATH}/warp_noise.mp4', warp_noise_vis, fps=10, video_codec='h264', options={'crf': '10'})
|
447 |
-
|
448 |
-
|
449 |
-
warp_latents = torch.tensor(warp_noise).permute(0, 3, 1, 2).to(latents_org.device).to(latents_org.dtype) # [frame, 4, H, W]
|
450 |
-
warp_latents = warp_latents.unsqueeze(0) # [1, frame, 4, H, W]
|
451 |
-
|
452 |
-
warped_masks = torch.tensor(warped_masks).permute(0, 3, 1, 2).unsqueeze(0) # [1, frame, 3, H, W]
|
453 |
-
mask_extend = torch.concat([warped_masks, warped_masks[:,:,0:1]], dim=2) # [1, frame, 4, H, W]
|
454 |
-
mask_extend = mask_extend.to(latents_org.device).to(latents_org.dtype)
|
455 |
-
|
456 |
-
warp_latents = warp_latents * mask_extend + latents_org * (1 - mask_extend)
|
457 |
-
warp_latents = warp_latents.permute(0, 2, 1, 3, 4)
|
458 |
-
random_noise = latents_org.clone().permute(0, 2, 1, 3, 4)
|
459 |
-
|
460 |
-
filter_shape = warp_latents.shape
|
461 |
-
|
462 |
-
freq_filter = get_freq_filter(
|
463 |
-
filter_shape,
|
464 |
-
device = device,
|
465 |
-
filter_type='butterworth',
|
466 |
-
n=4,
|
467 |
-
d_s=ds,
|
468 |
-
d_t=dt
|
469 |
-
)
|
470 |
-
|
471 |
-
warp_latents = freq_mix_3d(warp_latents, random_noise, freq_filter)
|
472 |
-
warp_latents = warp_latents.permute(0, 2, 1, 3, 4)
|
473 |
-
|
474 |
-
else:
|
475 |
-
warp_latents = latents_org.clone()
|
476 |
-
|
477 |
-
generator.manual_seed(42)
|
478 |
-
|
479 |
-
with torch.no_grad():
|
480 |
-
result = pipeline(
|
481 |
-
image=condition_image,
|
482 |
-
pose_embedding=cur_plucker_embedding,
|
483 |
-
height=height,
|
484 |
-
width=width,
|
485 |
-
num_frames=num_frames,
|
486 |
-
num_inference_steps=num_inference_steps,
|
487 |
-
min_guidance_scale=min_guidance_scale,
|
488 |
-
max_guidance_scale=max_guidance_scale,
|
489 |
-
do_image_process=True,
|
490 |
-
generator=generator,
|
491 |
-
output_type='pt',
|
492 |
-
pose_features= pose_features,
|
493 |
-
latents = warp_latents
|
494 |
-
).frames[0].cpu() #[f, c, h, w]
|
495 |
-
|
496 |
-
|
497 |
-
result = rearrange(result, 'f c h w -> f h w c')
|
498 |
-
result = (result * 255.0).to(torch.uint8)
|
499 |
-
|
500 |
-
video_path = tempfile.NamedTemporaryFile(suffix='.mp4').name
|
501 |
-
torchvision.io.write_video(video_path, result, fps=10, video_codec='h264', options={'crf': '8'})
|
502 |
-
|
503 |
-
return video_path
|
504 |
-
|
505 |
-
# -------------- UI definition --------------
|
506 |
-
with gr.Blocks() as demo:
|
507 |
-
# layout definition
|
508 |
-
gr.Markdown(title)
|
509 |
-
gr.Markdown(authors)
|
510 |
-
gr.Markdown(affiliation)
|
511 |
-
gr.Markdown(important_link)
|
512 |
-
gr.Markdown(description)
|
513 |
-
|
514 |
-
|
515 |
-
# with gr.Row():
|
516 |
-
# gr.Markdown("""# <center>Repositioning the Subject within Image </center>""")
|
517 |
-
mask = gr.State(value=None) # store mask
|
518 |
-
removal_mask = gr.State(value=None) # store removal mask
|
519 |
-
selected_points = gr.State([]) # store points
|
520 |
-
selected_points_text = gr.Textbox(label="Selected Points", visible=False)
|
521 |
-
|
522 |
-
original_image = gr.State(value=None) # store original input image
|
523 |
-
masked_original_image = gr.State(value=None) # store masked input image
|
524 |
-
mask_logits = gr.State(value=None) # store mask logits
|
525 |
-
|
526 |
-
depth = gr.State(value=None) # store depth
|
527 |
-
org_depth_image = gr.State(value=None) # store original depth image
|
528 |
-
|
529 |
-
camera_pose = gr.State(value=None) # store camera pose
|
530 |
-
|
531 |
-
with gr.Column():
|
532 |
-
|
533 |
-
outlines = """
|
534 |
-
<font size="5"><b>There are total 5 steps to complete the task.</b></font>
|
535 |
-
- Step 1: Input an image and Crop it to a suitable size;
|
536 |
-
- Step 2: Attain the subject mask;
|
537 |
-
- Step 3: Get depth and Draw Trajectory;
|
538 |
-
- Step 4: Get camera pose from trajectory or customize it;
|
539 |
-
- Step 5: Generate the final video.
|
540 |
-
"""
|
541 |
-
|
542 |
-
gr.Markdown(outlines)
|
543 |
-
|
544 |
-
|
545 |
-
with gr.Row():
|
546 |
-
with gr.Column():
|
547 |
-
# Step 1: Input Image
|
548 |
-
step1_dec = """
|
549 |
-
<font size="4"><b>Step 1: Input Image</b></font>
|
550 |
-
- Select the region using a <mark>bounding box</mark>, aiming for a ratio close to </mark>320:576</mark> (height:width).
|
551 |
-
- All provided images in `Examples` are in 320 x 576 resolution. Simply press `Process` to proceed.
|
552 |
-
"""
|
553 |
-
step1 = gr.Markdown(step1_dec)
|
554 |
-
raw_input = ImagePrompter(type="pil", label="Raw Image", show_label=True, interactive=True)
|
555 |
-
# left_up_point = gr.Textbox(value = "-1 -1", label="Left Up Point", interactive=True)
|
556 |
-
process_button = gr.Button("Process")
|
557 |
-
|
558 |
-
with gr.Column():
|
559 |
-
# Step 2: Get Subject Mask
|
560 |
-
step2_dec = """
|
561 |
-
<font size="4"><b>Step 2: Get Subject Mask</b></font>
|
562 |
-
- Use the <mark>bounding boxes</mark> or <mark>paints</mark> to select the subject.
|
563 |
-
- Press `Segment Subject` to get the mask. <mark>Can be refined iteratively by updating points<mark>.
|
564 |
-
"""
|
565 |
-
step2 = gr.Markdown(step2_dec)
|
566 |
-
canvas = ImagePrompter(type="pil", label="Input Image", show_label=True, interactive=True) # for mask painting
|
567 |
-
|
568 |
-
select_button = gr.Button("Segment Subject")
|
569 |
-
|
570 |
-
with gr.Row():
|
571 |
-
with gr.Column():
|
572 |
-
mask_dec = """
|
573 |
-
<font size="4"><b>Mask Result</b></font>
|
574 |
-
- Just for visualization purpose. No need to interact.
|
575 |
-
"""
|
576 |
-
mask_vis = gr.Markdown(mask_dec)
|
577 |
-
mask_output = gr.Image(type="pil", label="Mask", show_label=True, interactive=False)
|
578 |
-
with gr.Column():
|
579 |
-
# Step 3: Get Depth and Draw Trajectory
|
580 |
-
step3_dec = """
|
581 |
-
<font size="4"><b>Step 3: Get Depth and Draw Trajectory</b></font>
|
582 |
-
- Press `Get Depth` to get the depth image.
|
583 |
-
- Draw the trajectory by selecting points on the depth image. <mark>No more than 14 points</mark>.
|
584 |
-
- Press `Undo point` to remove all points.
|
585 |
-
"""
|
586 |
-
step3 = gr.Markdown(step3_dec)
|
587 |
-
depth_image = gr.Image(type="pil", label="Depth Image", show_label=True, interactive=False)
|
588 |
-
with gr.Row():
|
589 |
-
depth_button = gr.Button("Get Depth")
|
590 |
-
undo_button = gr.Button("Undo point")
|
591 |
-
|
592 |
-
with gr.Row():
|
593 |
-
with gr.Column():
|
594 |
-
# Step 4: Trajectory to Camera Pose or Get Camera Pose
|
595 |
-
step4_dec = """
|
596 |
-
<font size="4"><b>Step 4: Get camera pose from trajectory or customize it</b></font>
|
597 |
-
- Option 1: Transform the 2D trajectory to camera poses with depth. <mark>`Rescale` is used for depth alignment. Larger value can speed up the object motion.</mark>
|
598 |
-
- Option 2: Rotate the camera with a specific `Angle`.
|
599 |
-
- Option 3: Rotate the camera clockwise or counterclockwise with a specific `Angle`.
|
600 |
-
- Option 4: Translate the camera with `Tx` (<mark>Pan Left/Right</mark>), `Ty` (<mark>Pan Up/Down</mark>), `Tz` (<mark>Zoom In/Out</mark>) and `Speed`.
|
601 |
-
"""
|
602 |
-
step4 = gr.Markdown(step4_dec)
|
603 |
-
camera_pose_vis = gr.Plot(None, label='Camera Pose')
|
604 |
-
with gr.Row():
|
605 |
-
with gr.Column():
|
606 |
-
speed = gr.Slider(minimum=0.1, maximum=10, step=0.1, value=1.0, label="Speed", interactive=True)
|
607 |
-
rescale = gr.Slider(minimum=0.0, maximum=10, step=0.1, value=1.0, label="Rescale", interactive=True)
|
608 |
-
# traj2pose_button = gr.Button("Option1: Trajectory to Camera Pose")
|
609 |
-
|
610 |
-
angle = gr.Slider(minimum=-360, maximum=360, step=1, value=60, label="Angle", interactive=True)
|
611 |
-
# rotation_button = gr.Button("Option2: Rotate")
|
612 |
-
# clockwise_button = gr.Button("Option3: Clockwise")
|
613 |
-
with gr.Column():
|
614 |
-
|
615 |
-
Tx = gr.Slider(minimum=-1, maximum=1, step=1, value=0, label="Tx", interactive=True)
|
616 |
-
Ty = gr.Slider(minimum=-1, maximum=1, step=1, value=0, label="Ty", interactive=True)
|
617 |
-
Tz = gr.Slider(minimum=-1, maximum=1, step=1, value=0, label="Tz", interactive=True)
|
618 |
-
# translation_button = gr.Button("Option4: Translate")
|
619 |
-
with gr.Row():
|
620 |
-
camera_option = gr.Radio(choices = CAMERA_MODE, label='Camera Options', value=CAMERA_MODE[0], interactive=True)
|
621 |
-
with gr.Row():
|
622 |
-
get_camera_pose_button = gr.Button("Get Camera Pose")
|
623 |
-
|
624 |
-
with gr.Column():
|
625 |
-
# Step 5: Get the final generated video
|
626 |
-
step5_dec = """
|
627 |
-
<font size="4"><b>Step 5: Get the final generated video</b></font>
|
628 |
-
- 3 modes for background: <mark>Fixed</mark>, <mark>Reverse</mark>, <mark>Free</mark>.
|
629 |
-
- Enable <mark>Scale-wise Masks</mark> for better object control.
|
630 |
-
- Option to enable <mark>Shared Warping Latents</mark> and set <mark>stop frequency</mark> for spatial (`ds`) and temporal (`dt`) dimensions. Larger stop frequency will lead to artifacts.
|
631 |
-
"""
|
632 |
-
step5 = gr.Markdown(step5_dec)
|
633 |
-
generated_video = gr.Video(None, label='Generated Video')
|
634 |
-
|
635 |
-
with gr.Row():
|
636 |
-
seed = gr.Textbox(value = "42", label="Seed", interactive=True)
|
637 |
-
# num_inference_steps = gr.Slider(minimum=1, maximum=100, step=1, value=25, label="Number of Inference Steps", interactive=True)
|
638 |
-
bg_mode = gr.Radio(choices = ["Fixed", "Reverse", "Free"], label="Background Mode", value="Fixed", interactive=True)
|
639 |
-
# swl_mode = gr.Radio(choices = ["Enable SWL", "Disable SWL"], label="Shared Warping Latent", value="Disable SWL", interactive=True)
|
640 |
-
scale_wise_masks = gr.Checkbox(label="Enable Scale-wise Masks", interactive=True, value=True)
|
641 |
-
with gr.Row():
|
642 |
-
with gr.Column():
|
643 |
-
shared_wapring_latents = gr.Checkbox(label="Enable Shared Warping Latents", interactive=True)
|
644 |
-
with gr.Column():
|
645 |
-
ds = gr.Slider(minimum=0.0, maximum=1, step=0.1, value=0.5, label="ds", interactive=True)
|
646 |
-
dt = gr.Slider(minimum=0.0, maximum=1, step=0.1, value=0.5, label="dt", interactive=True)
|
647 |
-
|
648 |
-
generated_button = gr.Button("Generate")
|
649 |
-
|
650 |
-
|
651 |
-
|
652 |
-
# # event definition
|
653 |
-
process_button.click(
|
654 |
-
fn = process_image,
|
655 |
-
inputs = [raw_input],
|
656 |
-
outputs = [original_image, canvas]
|
657 |
-
)
|
658 |
-
|
659 |
-
select_button.click(
|
660 |
-
segment,
|
661 |
-
[canvas, original_image, mask_logits],
|
662 |
-
[mask, mask_output, masked_original_image, mask_logits]
|
663 |
-
)
|
664 |
-
|
665 |
-
depth_button.click(
|
666 |
-
get_depth,
|
667 |
-
[original_image, selected_points],
|
668 |
-
[depth, depth_image, org_depth_image]
|
669 |
-
)
|
670 |
-
|
671 |
-
depth_image.select(
|
672 |
-
get_points,
|
673 |
-
[depth_image, selected_points],
|
674 |
-
[depth_image, selected_points],
|
675 |
-
)
|
676 |
-
undo_button.click(
|
677 |
-
undo_points,
|
678 |
-
[org_depth_image],
|
679 |
-
[depth_image, selected_points]
|
680 |
-
)
|
681 |
-
|
682 |
-
get_camera_pose_button.click(
|
683 |
-
get_camera_pose(CAMERA_MODE),
|
684 |
-
[camera_option, selected_points, depth, mask, rescale, angle, Tx, Ty, Tz, speed],
|
685 |
-
[camera_pose, camera_pose_vis, rescale]
|
686 |
-
)
|
687 |
-
|
688 |
-
generated_button.click(
|
689 |
-
run_objctrl_2_5d,
|
690 |
-
[
|
691 |
-
original_image,
|
692 |
-
mask,
|
693 |
-
depth,
|
694 |
-
camera_pose,
|
695 |
-
bg_mode,
|
696 |
-
shared_wapring_latents,
|
697 |
-
scale_wise_masks,
|
698 |
-
rescale,
|
699 |
-
seed,
|
700 |
-
ds,
|
701 |
-
dt,
|
702 |
-
# num_inference_steps
|
703 |
-
],
|
704 |
-
[generated_video],
|
705 |
-
)
|
706 |
-
|
707 |
-
gr.Examples(
|
708 |
-
examples=examples,
|
709 |
-
inputs=[
|
710 |
-
raw_input,
|
711 |
-
rescale,
|
712 |
-
speed,
|
713 |
-
angle,
|
714 |
-
Tx,
|
715 |
-
Ty,
|
716 |
-
Tz,
|
717 |
-
camera_option,
|
718 |
-
bg_mode,
|
719 |
-
shared_wapring_latents,
|
720 |
-
scale_wise_masks,
|
721 |
-
ds,
|
722 |
-
dt,
|
723 |
-
seed,
|
724 |
-
selected_points_text # selected_points
|
725 |
-
],
|
726 |
-
outputs=[generated_video],
|
727 |
-
examples_per_page=10
|
728 |
-
)
|
729 |
-
|
730 |
-
selected_points_text.change(
|
731 |
-
sync_points,
|
732 |
-
inputs=[selected_points_text],
|
733 |
-
outputs=[selected_points]
|
734 |
-
)
|
735 |
-
|
736 |
-
|
737 |
-
gr.Markdown(article)
|
738 |
-
|
739 |
-
|
740 |
-
demo.queue().launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|