Spaces:
Runtime error
Runtime error
from typing import List, Optional, Tuple | |
import logging | |
import torch | |
from torch import nn | |
import transformers | |
from einops import rearrange | |
from flash_attn.flash_attn_interface import flash_attn_varlen_qkvpacked_func | |
from flash_attn.bert_padding import unpad_input, pad_input | |
from transformers.models.opt.modeling_opt import _make_causal_mask, _expand_mask | |
def _prepare_decoder_attention_mask_original(self, attention_mask, input_shape, inputs_embeds, past_key_values_length): | |
# create causal mask | |
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
combined_attention_mask = None | |
if input_shape[-1] > 1: | |
combined_attention_mask = _make_causal_mask( | |
input_shape, | |
inputs_embeds.dtype, | |
device=inputs_embeds.device, | |
past_key_values_length=past_key_values_length, | |
) | |
if attention_mask is not None: | |
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to( | |
inputs_embeds.device | |
) | |
combined_attention_mask = ( | |
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask | |
) | |
return combined_attention_mask | |
def forward_original( | |
self, | |
hidden_states: torch.Tensor, | |
key_value_states: Optional[torch.Tensor] = None, | |
past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
layer_head_mask: Optional[torch.Tensor] = None, | |
output_attentions: bool = False, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
"""Input shape: Batch x Time x Channel""" | |
# if key_value_states are provided this layer is used as a cross-attention layer | |
# for the decoder | |
is_cross_attention = key_value_states is not None | |
bsz, tgt_len, _ = hidden_states.size() | |
# get query proj | |
query_states = self.q_proj(hidden_states) * self.scaling | |
# get key, value proj | |
if is_cross_attention and past_key_value is not None: | |
# reuse k,v, cross_attentions | |
key_states = past_key_value[0] | |
value_states = past_key_value[1] | |
elif is_cross_attention: | |
# cross_attentions | |
key_states = self._shape(self.k_proj(key_value_states), -1, bsz) | |
value_states = self._shape(self.v_proj(key_value_states), -1, bsz) | |
elif past_key_value is not None: | |
# reuse k, v, self_attention | |
key_states = self._shape(self.k_proj(hidden_states), -1, bsz) | |
value_states = self._shape(self.v_proj(hidden_states), -1, bsz) | |
key_states = torch.cat([past_key_value[0], key_states], dim=2) | |
value_states = torch.cat([past_key_value[1], value_states], dim=2) | |
else: | |
# self_attention | |
key_states = self._shape(self.k_proj(hidden_states), -1, bsz) | |
value_states = self._shape(self.v_proj(hidden_states), -1, bsz) | |
if self.is_decoder: | |
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. | |
# Further calls to cross_attention layer can then reuse all cross-attention | |
# key/value_states (first "if" case) | |
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of | |
# all previous decoder key/value_states. Further calls to uni-directional self-attention | |
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) | |
# if encoder bi-directional self-attention `past_key_value` is always `None` | |
past_key_value = (key_states, value_states) | |
proj_shape = (bsz * self.num_heads, -1, self.head_dim) | |
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) | |
key_states = key_states.view(*proj_shape) | |
value_states = value_states.view(*proj_shape) | |
src_len = key_states.size(1) | |
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) | |
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): | |
raise ValueError( | |
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" | |
f" {attn_weights.size()}" | |
) | |
if attention_mask is not None: | |
if attention_mask.size() != (bsz, 1, tgt_len, src_len): | |
raise ValueError( | |
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" | |
) | |
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask | |
attn_weights = torch.max( | |
attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min, device=attn_weights.device) | |
) | |
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) | |
# upcast to fp32 if the weights are in fp16. Please see https://github.com/huggingface/transformers/pull/17437 | |
if attn_weights.dtype == torch.float16: | |
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(torch.float16) | |
else: | |
attn_weights = nn.functional.softmax(attn_weights, dim=-1) | |
if layer_head_mask is not None: | |
if layer_head_mask.size() != (self.num_heads,): | |
raise ValueError( | |
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" | |
f" {layer_head_mask.size()}" | |
) | |
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) | |
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) | |
if output_attentions: | |
# this operation is a bit awkward, but it's required to | |
# make sure that attn_weights keeps its gradient. | |
# In order to do so, attn_weights have to be reshaped | |
# twice and have to be reused in the following | |
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) | |
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) | |
else: | |
attn_weights_reshaped = None | |
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) | |
attn_output = torch.bmm(attn_probs, value_states) | |
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): | |
raise ValueError( | |
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" | |
f" {attn_output.size()}" | |
) | |
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) | |
attn_output = attn_output.transpose(1, 2) | |
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be | |
# partitioned aross GPUs when using tensor-parallelism. | |
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) | |
attn_output = self.out_proj(attn_output) | |
return attn_output, attn_weights_reshaped, past_key_value | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
key_value_states: Optional[torch.Tensor] = None, | |
past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
layer_head_mask: Optional[torch.Tensor] = None, | |
output_attentions: bool = False, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
"""Input shape: Batch x Time x Channel""" | |
# if key_value_states are provided this layer is used as a cross-attention layer | |
# for the decoder | |
is_cross_attention = key_value_states is not None | |
assert not is_cross_attention, "Cross attention is not supported for flash attention" | |
assert past_key_value is None, "past_key_value is not None is not supported for flash attention" | |
assert not output_attentions, "output_attentions is not supported for flash attention" | |
bsz, tgt_len, _ = hidden_states.size() | |
# get query proj | |
query_states = self.q_proj(hidden_states) * self.scaling | |
# get key, value proj | |
if past_key_value is not None: | |
# reuse k, v, self_attention | |
key_states = self._shape(self.k_proj(hidden_states), -1, bsz) | |
value_states = self._shape(self.v_proj(hidden_states), -1, bsz) | |
key_states = torch.cat([past_key_value[0], key_states], dim=2) | |
value_states = torch.cat([past_key_value[1], value_states], dim=2) | |
else: | |
# self_attention | |
key_states = self._shape(self.k_proj(hidden_states), -1, bsz) | |
value_states = self._shape(self.v_proj(hidden_states), -1, bsz) | |
if self.is_decoder: | |
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. | |
# Further calls to cross_attention layer can then reuse all cross-attention | |
# key/value_states (first "if" case) | |
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of | |
# all previous decoder key/value_states. Further calls to uni-directional self-attention | |
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) | |
# if encoder bi-directional self-attention `past_key_value` is always `None` | |
past_key_value = (key_states, value_states) | |
proj_shape = (bsz * self.num_heads, -1, self.head_dim) | |
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) | |
key_states = key_states.view(*proj_shape) | |
value_states = value_states.view(*proj_shape) | |
## for flash attention | |
flash_shape = (bsz, self.num_heads, tgt_len, self.head_dim) | |
query_states = query_states.view(*flash_shape) | |
key_states = key_states.view(*flash_shape) | |
value_states = value_states.view(*flash_shape) | |
qkv = torch.stack([query_states, key_states, value_states], dim=2) # shape = [bsz, num_heads, 3, tgt_len, head_dim] | |
qkv = qkv.transpose(1, 3) # [bsz, tgt_len, 3, num_heads, head_dim] | |
key_padding_mask = attention_mask | |
assert key_padding_mask is not None | |
x = rearrange(qkv, "b s three h d -> b s (three h d)") | |
x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask) | |
x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=self.num_heads) | |
output_unpad = flash_attn_varlen_qkvpacked_func( | |
x_unpad, cu_seqlens, max_s, self.dropout if self.training else 0.0, | |
softmax_scale=1, causal=True, return_attn_probs=False | |
) | |
output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'), | |
indices, bsz, tgt_len), | |
'b s (h d) -> b s h d', h=self.num_heads) | |
attn_output = self.out_proj(rearrange(output, "b s h d -> b s (h d)")) | |
return attn_output, None, past_key_value | |
# Disable the transformation of the attention mask in LlamaModel as the flash attention | |
# requires the attention mask to be the same as the key_padding_mask | |
def _prepare_decoder_attention_mask( | |
self, attention_mask, input_shape, inputs_embeds, past_key_values_length | |
): | |
# [bsz, seq_len] | |
return attention_mask | |
def replace_opt_attn_with_flash_attn(): | |
cuda_major, cuda_minor = torch.cuda.get_device_capability() | |
if cuda_major < 8: | |
logging.warning( | |
"Flash attention is only supported on A100 or H100 GPU during training due to head dim > 64 backward." | |
"ref: https://github.com/HazyResearch/flash-attention/issues/190#issuecomment-1523359593" | |
) | |
transformers.models.opt.modeling_opt.OPTDecoder._prepare_decoder_attention_mask = _prepare_decoder_attention_mask | |
transformers.models.opt.modeling_opt.OPTAttention.forward = forward | |
def replace_opt_attn_with_original_attn(): | |
transformers.models.opt.modeling_opt.OPTDecoder._prepare_decoder_attention_mask = _prepare_decoder_attention_mask_original | |
transformers.models.opt.modeling_opt.OPTAttention.forward = forward_original | |
if __name__ == '__main__': | |
## generate tests to verify the equivalence between forward_original and forward | |
import torch.nn as nn | |
import math | |
class FakeNN(nn.Module): | |
def __init__(self, ): | |
super().__init__() | |
self.scaling = 1 / math.sqrt(2048) | |
if False: | |
self.q_proj = nn.Linear(2048, 2048) | |
self.k_proj = nn.Linear(2048, 2048) | |
self.v_proj = nn.Linear(2048, 2048) | |
self.out_proj = nn.Linear(2048, 2048) | |
else: | |
self.q_proj = nn.Identity() | |
self.k_proj = nn.Identity() | |
self.v_proj = nn.Identity() | |
self.out_proj = nn.Identity() | |
self.is_decoder = True | |
self.num_heads = 2 | |
self.head_dim = 128 | |
self.embed_dim = 256 | |
self.dropout = 0 | |
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length): | |
# create causal mask | |
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
combined_attention_mask = None | |
if input_shape[-1] > 1: | |
combined_attention_mask = _make_causal_mask( | |
input_shape, | |
inputs_embeds.dtype, | |
device=inputs_embeds.device, | |
past_key_values_length=past_key_values_length, | |
) | |
if attention_mask is not None: | |
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to( | |
inputs_embeds.device | |
) | |
combined_attention_mask = ( | |
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask | |
) | |
return combined_attention_mask | |
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): | |
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() | |
fakenn = FakeNN().to(torch.bfloat16).to('cuda:0') | |
t_len = 3 | |
fake_input = torch.randn(2, t_len, fakenn.embed_dim).to(torch.bfloat16).to('cuda:0') | |
if False: | |
fake_lens = torch.randint(0, t_len, (2,)).to('cuda:0') | |
fake_lens = torch.LongTensor([3, 2]).to('cuda:0') | |
# fake_lens = torch.ones((2,)).to('cuda:0') * 3 | |
fake_mask = torch.arange(t_len).unsqueeze(0).to('cuda:0') < fake_lens.unsqueeze(1) | |
else: | |
fake_mask = torch.randint(0, t_len, (2, t_len)).bool().to('cuda:0') | |
fake_mask2 = fakenn._prepare_decoder_attention_mask(fake_mask, (2,t_len), fake_input, 0) | |
attn_output0, _, _ = forward_original(fakenn, fake_input, None, None, fake_mask2, None, False) | |
attn_output1, _, _ = forward(fakenn, fake_input, None, None, fake_mask, None, False) # shape = [2, 3, 256] | |
attn_output0 = attn_output0 * fake_mask.unsqueeze(-1) | |
print(torch.isclose(attn_output0, attn_output1).all()) | |
print(attn_output0.shape, attn_output1.shape) | |
difference = (attn_output0- attn_output1).abs() | |
print(difference) | |
print(difference.sum()) |