|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import json |
|
import os |
|
import re |
|
import warnings |
|
from functools import partial |
|
from pickle import UnpicklingError |
|
from typing import Any, Dict, Optional, Set, Tuple, Union |
|
|
|
import flax.linen as nn |
|
import jax |
|
import jax.numpy as jnp |
|
import msgpack.exceptions |
|
from flax.core.frozen_dict import FrozenDict, unfreeze |
|
from flax.serialization import from_bytes, to_bytes |
|
from flax.traverse_util import flatten_dict, unflatten_dict |
|
from jax.random import PRNGKey |
|
|
|
from .configuration_utils import PretrainedConfig |
|
from .dynamic_module_utils import custom_object_save |
|
from .generation import FlaxGenerationMixin, GenerationConfig |
|
from .modeling_flax_pytorch_utils import load_pytorch_checkpoint_in_flax_state_dict |
|
from .utils import ( |
|
FLAX_WEIGHTS_INDEX_NAME, |
|
FLAX_WEIGHTS_NAME, |
|
WEIGHTS_INDEX_NAME, |
|
WEIGHTS_NAME, |
|
PushToHubMixin, |
|
add_code_sample_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
cached_file, |
|
copy_func, |
|
download_url, |
|
has_file, |
|
is_offline_mode, |
|
is_remote_url, |
|
logging, |
|
replace_return_docstrings, |
|
) |
|
from .utils.hub import convert_file_size_to_int, get_checkpoint_shard_files |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
def quick_gelu(x): |
|
return x * jax.nn.sigmoid(1.702 * x) |
|
|
|
|
|
ACT2FN = { |
|
"gelu": partial(nn.gelu, approximate=False), |
|
"relu": nn.relu, |
|
"silu": nn.swish, |
|
"swish": nn.swish, |
|
"gelu_new": partial(nn.gelu, approximate=True), |
|
"quick_gelu": quick_gelu, |
|
} |
|
|
|
|
|
def dtype_byte_size(dtype): |
|
""" |
|
Returns the size (in bytes) occupied by one parameter of type `dtype`. Example: |
|
```py |
|
>>> dtype_byte_size(np.float32) |
|
4 |
|
``` |
|
""" |
|
if dtype == bool: |
|
return 1 / 8 |
|
bit_search = re.search(r"[^\d](\d+)$", dtype.name) |
|
if bit_search is None: |
|
raise ValueError(f"`dtype` is not a valid dtype: {dtype}.") |
|
bit_size = int(bit_search.groups()[0]) |
|
return bit_size // 8 |
|
|
|
|
|
def flax_shard_checkpoint(params, max_shard_size="10GB"): |
|
""" |
|
Splits a model state dictionary in sub-checkpoints so that the final size of each sub-checkpoint does not exceed a |
|
given size. The sub-checkpoints are determined by iterating through the `state_dict` in the order of its keys, so |
|
there is no optimization made to make each sub-checkpoint as close as possible to the maximum size passed. For |
|
example, if the limit is 10GB and we have weights of sizes [6GB, 6GB, 2GB, 6GB, 2GB, 2GB] they will get sharded as |
|
[6GB], [6+2GB], [6+2+2GB] and not [6+2+2GB], [6+2GB], [6GB]. |
|
|
|
<Tip warning={true}> |
|
|
|
If one of the model's weight is bigger that `max_shard_size`, it will end up in its own sub-checkpoint which will |
|
have a size greater than `max_shard_size`. |
|
|
|
</Tip> |
|
|
|
Args: |
|
params (`Union[Dict, FrozenDict]`): A `PyTree` of model parameters. |
|
max_shard_size (`int` or `str`, *optional*, defaults to `"10GB"`): |
|
The maximum size of each sub-checkpoint. If expressed as a string, needs to be digits followed by a unit |
|
(like `"5MB"`). |
|
""" |
|
max_shard_size = convert_file_size_to_int(max_shard_size) |
|
|
|
sharded_state_dicts = [] |
|
current_block = {} |
|
current_block_size = 0 |
|
total_size = 0 |
|
|
|
|
|
weights = flatten_dict(params, sep="/") |
|
for item in weights: |
|
weight_size = weights[item].size * dtype_byte_size(weights[item].dtype) |
|
|
|
|
|
if current_block_size + weight_size > max_shard_size: |
|
sharded_state_dicts.append(current_block) |
|
current_block = {} |
|
current_block_size = 0 |
|
|
|
current_block[item] = weights[item] |
|
current_block_size += weight_size |
|
total_size += weight_size |
|
|
|
|
|
sharded_state_dicts.append(current_block) |
|
|
|
|
|
if len(sharded_state_dicts) == 1: |
|
return {FLAX_WEIGHTS_NAME: sharded_state_dicts[0]}, None |
|
|
|
|
|
weight_map = {} |
|
shards = {} |
|
for idx, shard in enumerate(sharded_state_dicts): |
|
shard_file = FLAX_WEIGHTS_NAME.replace(".msgpack", f"-{idx+1:05d}-of-{len(sharded_state_dicts):05d}.msgpack") |
|
shards[shard_file] = shard |
|
for weight_name in shard.keys(): |
|
weight_map[weight_name] = shard_file |
|
|
|
|
|
metadata = {"total_size": total_size} |
|
index = {"metadata": metadata, "weight_map": weight_map} |
|
return shards, index |
|
|
|
|
|
class FlaxPreTrainedModel(PushToHubMixin, FlaxGenerationMixin): |
|
r""" |
|
Base class for all models. |
|
|
|
[`FlaxPreTrainedModel`] takes care of storing the configuration of the models and handles methods for loading, |
|
downloading and saving models. |
|
|
|
Class attributes (overridden by derived classes): |
|
|
|
- **config_class** ([`PretrainedConfig`]) -- A subclass of [`PretrainedConfig`] to use as configuration class |
|
for this model architecture. |
|
- **base_model_prefix** (`str`) -- A string indicating the attribute associated to the base model in derived |
|
classes of the same architecture adding modules on top of the base model. |
|
- **main_input_name** (`str`) -- The name of the principal input to the model (often `input_ids` for NLP |
|
models, `pixel_values` for vision models and `input_values` for speech models). |
|
""" |
|
config_class = None |
|
base_model_prefix = "" |
|
main_input_name = "input_ids" |
|
_auto_class = None |
|
_missing_keys = set() |
|
|
|
def __init__( |
|
self, |
|
config: PretrainedConfig, |
|
module: nn.Module, |
|
input_shape: Tuple = (1, 1), |
|
seed: int = 0, |
|
dtype: jnp.dtype = jnp.float32, |
|
_do_init: bool = True, |
|
): |
|
if config is None: |
|
raise ValueError("config cannot be None") |
|
|
|
if module is None: |
|
raise ValueError("module cannot be None") |
|
|
|
|
|
self._config = config |
|
self._module = module |
|
|
|
|
|
self.key = PRNGKey(seed) |
|
self.dtype = dtype |
|
self.input_shape = input_shape |
|
self.generation_config = GenerationConfig.from_model_config(config) if self.can_generate() else None |
|
|
|
|
|
self._is_initialized = _do_init |
|
|
|
if _do_init: |
|
|
|
random_params = self.init_weights(self.key, input_shape) |
|
params_shape_tree = jax.eval_shape(lambda params: params, random_params) |
|
else: |
|
init_fn = partial(self.init_weights, input_shape=input_shape) |
|
params_shape_tree = jax.eval_shape(init_fn, self.key) |
|
|
|
logger.info( |
|
"Model weights are not initialized as `_do_init` is set to `False`. " |
|
f"Make sure to call `{self.__class__.__name__}.init_weights` manually to initialize the weights." |
|
) |
|
|
|
|
|
self._params_shape_tree = params_shape_tree |
|
|
|
|
|
self._required_params = set(flatten_dict(unfreeze(params_shape_tree)).keys()) |
|
|
|
|
|
if _do_init: |
|
self.params = random_params |
|
|
|
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> Dict: |
|
raise NotImplementedError(f"init method has to be implemented for {self}") |
|
|
|
def enable_gradient_checkpointing(self): |
|
raise NotImplementedError(f"gradient checkpointing method has to be implemented for {self}") |
|
|
|
@classmethod |
|
def _from_config(cls, config, **kwargs): |
|
""" |
|
All context managers that the model should be initialized under go here. |
|
""" |
|
return cls(config, **kwargs) |
|
|
|
@property |
|
def framework(self) -> str: |
|
""" |
|
:str: Identifies that this is a Flax model. |
|
""" |
|
return "flax" |
|
|
|
@property |
|
def config(self) -> PretrainedConfig: |
|
return self._config |
|
|
|
@property |
|
def module(self) -> nn.Module: |
|
return self._module |
|
|
|
@property |
|
def params(self) -> Union[Dict, FrozenDict]: |
|
if not self._is_initialized: |
|
raise ValueError( |
|
"`params` cannot be accessed from model when the model is created with `_do_init=False`. " |
|
"You must call `init_weights` manually and store the params outside of the model and " |
|
"pass it explicitly where needed." |
|
) |
|
return self._params |
|
|
|
@property |
|
def required_params(self) -> Set: |
|
return self._required_params |
|
|
|
@property |
|
def params_shape_tree(self) -> Dict: |
|
return self._params_shape_tree |
|
|
|
@params.setter |
|
def params(self, params: Union[Dict, FrozenDict]): |
|
|
|
if not self._is_initialized: |
|
raise ValueError( |
|
"`params` cannot be set from model when the model is created with `_do_init=False`. " |
|
"You store the params outside of the model." |
|
) |
|
|
|
if isinstance(params, FrozenDict): |
|
params = unfreeze(params) |
|
param_keys = set(flatten_dict(params).keys()) |
|
if len(self.required_params - param_keys) > 0: |
|
raise ValueError( |
|
"Some parameters are missing. Make sure that `params` include the following " |
|
f"parameters {self.required_params - param_keys}" |
|
) |
|
self._params = params |
|
|
|
def _cast_floating_to(self, params: Union[Dict, FrozenDict], dtype: jnp.dtype, mask: Any = None) -> Any: |
|
""" |
|
Helper method to cast floating-point values of given parameter `PyTree` to given `dtype`. |
|
""" |
|
|
|
|
|
def conditional_cast(param): |
|
if isinstance(param, jnp.ndarray) and jnp.issubdtype(param.dtype, jnp.floating): |
|
param = param.astype(dtype) |
|
return param |
|
|
|
if mask is None: |
|
return jax.tree_util.tree_map(conditional_cast, params) |
|
|
|
flat_params = flatten_dict(params) |
|
flat_mask, _ = jax.tree_util.tree_flatten(mask) |
|
|
|
for masked, key in zip(flat_mask, flat_params.keys()): |
|
if masked: |
|
param = flat_params[key] |
|
flat_params[key] = conditional_cast(param) |
|
|
|
return unflatten_dict(flat_params) |
|
|
|
def to_bf16(self, params: Union[Dict, FrozenDict], mask: Any = None): |
|
r""" |
|
Cast the floating-point `params` to `jax.numpy.bfloat16`. This returns a new `params` tree and does not cast |
|
the `params` in place. |
|
|
|
This method can be used on TPU to explicitly convert the model parameters to bfloat16 precision to do full |
|
half-precision training or to save weights in bfloat16 for inference in order to save memory and improve speed. |
|
|
|
Arguments: |
|
params (`Union[Dict, FrozenDict]`): |
|
A `PyTree` of model parameters. |
|
mask (`Union[Dict, FrozenDict]`): |
|
A `PyTree` with same structure as the `params` tree. The leaves should be booleans, `True` for params |
|
you want to cast, and should be `False` for those you want to skip. |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from transformers import FlaxBertModel |
|
|
|
>>> # load model |
|
>>> model = FlaxBertModel.from_pretrained("bert-base-cased") |
|
>>> # By default, the model parameters will be in fp32 precision, to cast these to bfloat16 precision |
|
>>> model.params = model.to_bf16(model.params) |
|
>>> # If you want don't want to cast certain parameters (for example layer norm bias and scale) |
|
>>> # then pass the mask as follows |
|
>>> from flax import traverse_util |
|
|
|
>>> model = FlaxBertModel.from_pretrained("bert-base-cased") |
|
>>> flat_params = traverse_util.flatten_dict(model.params) |
|
>>> mask = { |
|
... path: (path[-2] != ("LayerNorm", "bias") and path[-2:] != ("LayerNorm", "scale")) |
|
... for path in flat_params |
|
... } |
|
>>> mask = traverse_util.unflatten_dict(mask) |
|
>>> model.params = model.to_bf16(model.params, mask) |
|
```""" |
|
return self._cast_floating_to(params, jnp.bfloat16, mask) |
|
|
|
def to_fp32(self, params: Union[Dict, FrozenDict], mask: Any = None): |
|
r""" |
|
Cast the floating-point `parmas` to `jax.numpy.float32`. This method can be used to explicitly convert the |
|
model parameters to fp32 precision. This returns a new `params` tree and does not cast the `params` in place. |
|
|
|
Arguments: |
|
params (`Union[Dict, FrozenDict]`): |
|
A `PyTree` of model parameters. |
|
mask (`Union[Dict, FrozenDict]`): |
|
A `PyTree` with same structure as the `params` tree. The leaves should be booleans, `True` for params |
|
you want to cast, and should be `False` for those you want to skip |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from transformers import FlaxBertModel |
|
|
|
>>> # Download model and configuration from huggingface.co |
|
>>> model = FlaxBertModel.from_pretrained("bert-base-cased") |
|
>>> # By default, the model params will be in fp32, to illustrate the use of this method, |
|
>>> # we'll first cast to fp16 and back to fp32 |
|
>>> model.params = model.to_f16(model.params) |
|
>>> # now cast back to fp32 |
|
>>> model.params = model.to_fp32(model.params) |
|
```""" |
|
return self._cast_floating_to(params, jnp.float32, mask) |
|
|
|
def to_fp16(self, params: Union[Dict, FrozenDict], mask: Any = None): |
|
r""" |
|
Cast the floating-point `parmas` to `jax.numpy.float16`. This returns a new `params` tree and does not cast the |
|
`params` in place. |
|
|
|
This method can be used on GPU to explicitly convert the model parameters to float16 precision to do full |
|
half-precision training or to save weights in float16 for inference in order to save memory and improve speed. |
|
|
|
Arguments: |
|
params (`Union[Dict, FrozenDict]`): |
|
A `PyTree` of model parameters. |
|
mask (`Union[Dict, FrozenDict]`): |
|
A `PyTree` with same structure as the `params` tree. The leaves should be booleans, `True` for params |
|
you want to cast, and should be `False` for those you want to skip |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from transformers import FlaxBertModel |
|
|
|
>>> # load model |
|
>>> model = FlaxBertModel.from_pretrained("bert-base-cased") |
|
>>> # By default, the model params will be in fp32, to cast these to float16 |
|
>>> model.params = model.to_fp16(model.params) |
|
>>> # If you want don't want to cast certain parameters (for example layer norm bias and scale) |
|
>>> # then pass the mask as follows |
|
>>> from flax import traverse_util |
|
|
|
>>> model = FlaxBertModel.from_pretrained("bert-base-cased") |
|
>>> flat_params = traverse_util.flatten_dict(model.params) |
|
>>> mask = { |
|
... path: (path[-2] != ("LayerNorm", "bias") and path[-2:] != ("LayerNorm", "scale")) |
|
... for path in flat_params |
|
... } |
|
>>> mask = traverse_util.unflatten_dict(mask) |
|
>>> model.params = model.to_fp16(model.params, mask) |
|
```""" |
|
return self._cast_floating_to(params, jnp.float16, mask) |
|
|
|
@classmethod |
|
def load_flax_sharded_weights(cls, shard_files): |
|
""" |
|
This is the same as [`flax.serialization.from_bytes`] |
|
(https:lax.readthedocs.io/en/latest/_modules/flax/serialization.html#from_bytes) but for a sharded checkpoint. |
|
|
|
This load is performed efficiently: each checkpoint shard is loaded one by one in RAM and deleted after being |
|
loaded in the model. |
|
|
|
Args: |
|
shard_files (`List[str]`: |
|
The list of shard files to load. |
|
|
|
Returns: |
|
`Dict`: A nested dictionary of the model parameters, in the expected format for flax models : `{'model': |
|
{'params': {'...'}}}`. |
|
""" |
|
|
|
|
|
state_sharded_dict = {} |
|
|
|
for shard_file in shard_files: |
|
|
|
try: |
|
with open(shard_file, "rb") as state_f: |
|
state = from_bytes(cls, state_f.read()) |
|
except (UnpicklingError, msgpack.exceptions.ExtraData) as e: |
|
with open(shard_file) as f: |
|
if f.read().startswith("version"): |
|
raise OSError( |
|
"You seem to have cloned a repository without having git-lfs installed. Please" |
|
" install git-lfs and run `git lfs install` followed by `git lfs pull` in the" |
|
" folder you cloned." |
|
) |
|
else: |
|
raise ValueError from e |
|
except (UnicodeDecodeError, ValueError): |
|
raise EnvironmentError(f"Unable to convert {shard_file} to Flax deserializable object. ") |
|
|
|
state = flatten_dict(state, sep="/") |
|
state_sharded_dict.update(state) |
|
del state |
|
gc.collect() |
|
|
|
|
|
return unflatten_dict(state_sharded_dict, sep="/") |
|
|
|
@classmethod |
|
def can_generate(cls) -> bool: |
|
""" |
|
Returns whether this model can generate sequences with `.generate()`. Returns: |
|
`bool`: Whether this model can generate sequences with `.generate()`. |
|
""" |
|
|
|
|
|
if "GenerationMixin" in str(cls.prepare_inputs_for_generation) and "GenerationMixin" in str(cls.generate): |
|
return False |
|
return True |
|
|
|
@classmethod |
|
def from_pretrained( |
|
cls, |
|
pretrained_model_name_or_path: Union[str, os.PathLike], |
|
dtype: jnp.dtype = jnp.float32, |
|
*model_args, |
|
config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None, |
|
cache_dir: Optional[Union[str, os.PathLike]] = None, |
|
ignore_mismatched_sizes: bool = False, |
|
force_download: bool = False, |
|
local_files_only: bool = False, |
|
token: Optional[Union[str, bool]] = None, |
|
revision: str = "main", |
|
**kwargs, |
|
): |
|
r""" |
|
Instantiate a pretrained flax model from a pre-trained model configuration. |
|
|
|
The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come |
|
pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning |
|
task. |
|
|
|
The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those |
|
weights are discarded. |
|
|
|
Parameters: |
|
pretrained_model_name_or_path (`str` or `os.PathLike`): |
|
Can be either: |
|
|
|
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. |
|
Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a |
|
user or organization name, like `dbmdz/bert-base-german-cased`. |
|
- A path to a *directory* containing model weights saved using |
|
[`~FlaxPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. |
|
- A path or url to a *pt index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In this case, |
|
`from_pt` should be set to `True`. |
|
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): |
|
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and |
|
`jax.numpy.bfloat16` (on TPUs). |
|
|
|
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If |
|
specified all the computation will be performed with the given `dtype`. |
|
|
|
**Note that this only specifies the dtype of the computation and does not influence the dtype of model |
|
parameters.** |
|
|
|
If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and |
|
[`~FlaxPreTrainedModel.to_bf16`]. |
|
model_args (sequence of positional arguments, *optional*): |
|
All remaining positional arguments will be passed to the underlying model's `__init__` method. |
|
config (`Union[PretrainedConfig, str, os.PathLike]`, *optional*): |
|
Can be either: |
|
|
|
- an instance of a class derived from [`PretrainedConfig`], |
|
- a string or path valid as input to [`~PretrainedConfig.from_pretrained`]. |
|
|
|
Configuration for the model to use instead of an automatically loaded configuration. Configuration can |
|
be automatically loaded when: |
|
|
|
- The model is a model provided by the library (loaded with the *model id* string of a pretrained |
|
model). |
|
- The model was saved using [`~PreTrainedModel.save_pretrained`] and is reloaded by supplying the |
|
save directory. |
|
- The model is loaded by supplying a local directory as `pretrained_model_name_or_path` and a |
|
configuration JSON file named *config.json* is found in the directory. |
|
cache_dir (`Union[str, os.PathLike]`, *optional*): |
|
Path to a directory in which a downloaded pretrained model configuration should be cached if the |
|
standard cache should not be used. |
|
from_pt (`bool`, *optional*, defaults to `False`): |
|
Load the model weights from a PyTorch checkpoint save file (see docstring of |
|
`pretrained_model_name_or_path` argument). |
|
ignore_mismatched_sizes (`bool`, *optional*, defaults to `False`): |
|
Whether or not to raise an error if some of the weights from the checkpoint do not have the same size |
|
as the weights of the model (if for instance, you are instantiating a model with 10 labels from a |
|
checkpoint with 3 labels). |
|
force_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to force the (re-)download of the model weights and configuration files, overriding the |
|
cached versions if they exist. |
|
resume_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to delete incompletely received files. Will attempt to resume the download if such a |
|
file exists. |
|
proxies (`Dict[str, str]`, *optional*): |
|
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', |
|
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. |
|
local_files_only(`bool`, *optional*, defaults to `False`): |
|
Whether or not to only look at local files (i.e., do not try to download the model). |
|
token (`str` or `bool`, *optional*): |
|
The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use |
|
the token generated when running `huggingface-cli login` (stored in `~/.huggingface`). |
|
revision (`str`, *optional*, defaults to `"main"`): |
|
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a |
|
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any |
|
identifier allowed by git. |
|
|
|
|
|
<Tip> |
|
|
|
To test a pull request you made on the Hub, you can pass `revision="refs/pr/<pr_number>". |
|
|
|
</Tip> |
|
|
|
subfolder (`str`, *optional*, defaults to `""`): |
|
In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can |
|
specify the folder name here. |
|
kwargs (remaining dictionary of keyword arguments, *optional*): |
|
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., |
|
`output_attentions=True`). Behaves differently depending on whether a `config` is provided or |
|
automatically loaded: |
|
|
|
- If a configuration is provided with `config`, `**kwargs` will be directly passed to the |
|
underlying model's `__init__` method (we assume all relevant updates to the configuration have |
|
already been done) |
|
- If a configuration is not provided, `kwargs` will be first passed to the configuration class |
|
initialization function ([`~PretrainedConfig.from_pretrained`]). Each key of `kwargs` that |
|
corresponds to a configuration attribute will be used to override said attribute with the |
|
supplied `kwargs` value. Remaining keys that do not correspond to any configuration attribute |
|
will be passed to the underlying model's `__init__` function. |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from transformers import BertConfig, FlaxBertModel |
|
|
|
>>> # Download model and configuration from huggingface.co and cache. |
|
>>> model = FlaxBertModel.from_pretrained("bert-base-cased") |
|
>>> # Model was saved using *save_pretrained('./test/saved_model/')* (for example purposes, not runnable). |
|
>>> model = FlaxBertModel.from_pretrained("./test/saved_model/") |
|
>>> # Loading from a PyTorch checkpoint file instead of a PyTorch model (slower, for example purposes, not runnable). |
|
>>> config = BertConfig.from_json_file("./pt_model/config.json") |
|
>>> model = FlaxBertModel.from_pretrained("./pt_model/pytorch_model.bin", from_pt=True, config=config) |
|
```""" |
|
from_pt = kwargs.pop("from_pt", False) |
|
resume_download = kwargs.pop("resume_download", False) |
|
proxies = kwargs.pop("proxies", None) |
|
use_auth_token = kwargs.pop("use_auth_token", None) |
|
trust_remote_code = kwargs.pop("trust_remote_code", None) |
|
from_pipeline = kwargs.pop("_from_pipeline", None) |
|
from_auto_class = kwargs.pop("_from_auto", False) |
|
_do_init = kwargs.pop("_do_init", True) |
|
subfolder = kwargs.pop("subfolder", "") |
|
commit_hash = kwargs.pop("_commit_hash", None) |
|
|
|
|
|
_ = kwargs.pop("adapter_kwargs", None) |
|
|
|
if use_auth_token is not None: |
|
warnings.warn( |
|
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning |
|
) |
|
if token is not None: |
|
raise ValueError( |
|
"`token` and `use_auth_token` are both specified. Please set only the argument `token`." |
|
) |
|
token = use_auth_token |
|
|
|
if trust_remote_code is True: |
|
logger.warning( |
|
"The argument `trust_remote_code` is to be used with Auto classes. It has no effect here and is" |
|
" ignored." |
|
) |
|
|
|
user_agent = {"file_type": "model", "framework": "flax", "from_auto_class": from_auto_class} |
|
if from_pipeline is not None: |
|
user_agent["using_pipeline"] = from_pipeline |
|
|
|
if is_offline_mode() and not local_files_only: |
|
logger.info("Offline mode: forcing local_files_only=True") |
|
local_files_only = True |
|
|
|
|
|
if not isinstance(config, PretrainedConfig): |
|
config_path = config if config is not None else pretrained_model_name_or_path |
|
config, model_kwargs = cls.config_class.from_pretrained( |
|
config_path, |
|
cache_dir=cache_dir, |
|
return_unused_kwargs=True, |
|
force_download=force_download, |
|
resume_download=resume_download, |
|
proxies=proxies, |
|
local_files_only=local_files_only, |
|
token=token, |
|
revision=revision, |
|
subfolder=subfolder, |
|
_from_auto=from_auto_class, |
|
_from_pipeline=from_pipeline, |
|
_commit_hash=commit_hash, |
|
**kwargs, |
|
) |
|
else: |
|
model_kwargs = kwargs.copy() |
|
|
|
if commit_hash is None: |
|
commit_hash = getattr(config, "_commit_hash", None) |
|
|
|
|
|
model_kwargs["dtype"] = dtype |
|
|
|
|
|
|
|
is_sharded = False |
|
|
|
|
|
if pretrained_model_name_or_path is not None: |
|
pretrained_model_name_or_path = str(pretrained_model_name_or_path) |
|
is_local = os.path.isdir(pretrained_model_name_or_path) |
|
if os.path.isdir(pretrained_model_name_or_path): |
|
if from_pt and os.path.isfile(os.path.join(pretrained_model_name_or_path, subfolder, WEIGHTS_NAME)): |
|
|
|
archive_file = os.path.join(pretrained_model_name_or_path, subfolder, WEIGHTS_NAME) |
|
elif from_pt and os.path.isfile( |
|
os.path.join(pretrained_model_name_or_path, subfolder, WEIGHTS_INDEX_NAME) |
|
): |
|
|
|
archive_file = os.path.join(pretrained_model_name_or_path, subfolder, WEIGHTS_INDEX_NAME) |
|
is_sharded = True |
|
elif os.path.isfile(os.path.join(pretrained_model_name_or_path, subfolder, FLAX_WEIGHTS_NAME)): |
|
|
|
archive_file = os.path.join(pretrained_model_name_or_path, subfolder, FLAX_WEIGHTS_NAME) |
|
elif os.path.isfile(os.path.join(pretrained_model_name_or_path, subfolder, FLAX_WEIGHTS_INDEX_NAME)): |
|
|
|
archive_file = os.path.join(pretrained_model_name_or_path, subfolder, FLAX_WEIGHTS_INDEX_NAME) |
|
is_sharded = True |
|
|
|
elif os.path.isfile(os.path.join(pretrained_model_name_or_path, subfolder, WEIGHTS_NAME)): |
|
raise EnvironmentError( |
|
f"Error no file named {FLAX_WEIGHTS_NAME} found in directory {pretrained_model_name_or_path} " |
|
"but there is a file for PyTorch weights. Use `from_pt=True` to load this model from those " |
|
"weights." |
|
) |
|
else: |
|
raise EnvironmentError( |
|
f"Error no file named {FLAX_WEIGHTS_NAME} or {WEIGHTS_NAME} found in directory " |
|
f"{pretrained_model_name_or_path}." |
|
) |
|
elif os.path.isfile(os.path.join(subfolder, pretrained_model_name_or_path)): |
|
archive_file = pretrained_model_name_or_path |
|
is_local = True |
|
elif is_remote_url(pretrained_model_name_or_path): |
|
filename = pretrained_model_name_or_path |
|
resolved_archive_file = download_url(pretrained_model_name_or_path) |
|
else: |
|
filename = WEIGHTS_NAME if from_pt else FLAX_WEIGHTS_NAME |
|
try: |
|
|
|
cached_file_kwargs = { |
|
"cache_dir": cache_dir, |
|
"force_download": force_download, |
|
"proxies": proxies, |
|
"resume_download": resume_download, |
|
"local_files_only": local_files_only, |
|
"token": token, |
|
"user_agent": user_agent, |
|
"revision": revision, |
|
"subfolder": subfolder, |
|
"_raise_exceptions_for_missing_entries": False, |
|
"_commit_hash": commit_hash, |
|
} |
|
resolved_archive_file = cached_file(pretrained_model_name_or_path, filename, **cached_file_kwargs) |
|
|
|
|
|
|
|
if resolved_archive_file is None and filename == FLAX_WEIGHTS_NAME: |
|
|
|
resolved_archive_file = cached_file( |
|
pretrained_model_name_or_path, FLAX_WEIGHTS_INDEX_NAME, **cached_file_kwargs |
|
) |
|
if resolved_archive_file is not None: |
|
is_sharded = True |
|
|
|
elif resolved_archive_file is None and from_pt: |
|
resolved_archive_file = cached_file( |
|
pretrained_model_name_or_path, WEIGHTS_INDEX_NAME, **cached_file_kwargs |
|
) |
|
if resolved_archive_file is not None: |
|
is_sharded = True |
|
if resolved_archive_file is None: |
|
|
|
|
|
has_file_kwargs = { |
|
"revision": revision, |
|
"proxies": proxies, |
|
"token": token, |
|
} |
|
if has_file(pretrained_model_name_or_path, WEIGHTS_NAME, **has_file_kwargs): |
|
raise EnvironmentError( |
|
f"{pretrained_model_name_or_path} does not appear to have a file named" |
|
f" {FLAX_WEIGHTS_NAME} but there is a file for PyTorch weights. Use `from_pt=True` to" |
|
" load this model from those weights." |
|
) |
|
elif has_file(pretrained_model_name_or_path, WEIGHTS_INDEX_NAME, **has_file_kwargs): |
|
raise EnvironmentError( |
|
f"{pretrained_model_name_or_path} does not appear to have a file named" |
|
f" {FLAX_WEIGHTS_INDEX_NAME} but there is a sharded file for PyTorch weights. Use" |
|
" `from_pt=True` to load this model from those weights." |
|
) |
|
else: |
|
raise EnvironmentError( |
|
f"{pretrained_model_name_or_path} does not appear to have a file named" |
|
f" {FLAX_WEIGHTS_NAME} or {WEIGHTS_NAME}." |
|
) |
|
except EnvironmentError: |
|
|
|
|
|
raise |
|
except Exception: |
|
|
|
raise EnvironmentError( |
|
f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it" |
|
" from 'https://huggingface.co/models', make sure you don't have a local directory with the" |
|
f" same name. Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a" |
|
f" directory containing a file named {FLAX_WEIGHTS_NAME} or {WEIGHTS_NAME}." |
|
) |
|
|
|
if is_local: |
|
logger.info(f"loading weights file {archive_file}") |
|
resolved_archive_file = archive_file |
|
else: |
|
logger.info(f"loading weights file {filename} from cache at {resolved_archive_file}") |
|
else: |
|
resolved_archive_file = None |
|
|
|
|
|
if is_sharded: |
|
|
|
resolved_archive_file, _ = get_checkpoint_shard_files( |
|
pretrained_model_name_or_path, |
|
resolved_archive_file, |
|
cache_dir=cache_dir, |
|
force_download=force_download, |
|
proxies=proxies, |
|
resume_download=resume_download, |
|
local_files_only=local_files_only, |
|
token=token, |
|
user_agent=user_agent, |
|
revision=revision, |
|
subfolder=subfolder, |
|
_commit_hash=commit_hash, |
|
) |
|
|
|
|
|
model = cls(config, *model_args, _do_init=_do_init, **model_kwargs) |
|
|
|
if from_pt: |
|
state = load_pytorch_checkpoint_in_flax_state_dict(model, resolved_archive_file, is_sharded) |
|
else: |
|
if is_sharded: |
|
state = cls.load_flax_sharded_weights(resolved_archive_file) |
|
else: |
|
try: |
|
with open(resolved_archive_file, "rb") as state_f: |
|
state = from_bytes(cls, state_f.read()) |
|
except (UnpicklingError, msgpack.exceptions.ExtraData) as e: |
|
try: |
|
with open(resolved_archive_file) as f: |
|
if f.read().startswith("version"): |
|
raise OSError( |
|
"You seem to have cloned a repository without having git-lfs installed. Please" |
|
" install git-lfs and run `git lfs install` followed by `git lfs pull` in the" |
|
" folder you cloned." |
|
) |
|
else: |
|
raise ValueError from e |
|
except (UnicodeDecodeError, ValueError): |
|
raise EnvironmentError(f"Unable to convert {archive_file} to Flax deserializable object. ") |
|
|
|
|
|
|
|
if _do_init: |
|
state = jax.tree_util.tree_map(jnp.array, state) |
|
else: |
|
|
|
state = jax.tree_util.tree_map(lambda x: jax.device_put(x, jax.devices("cpu")[0]), state) |
|
|
|
if "batch_stats" in state: |
|
|
|
if ( |
|
cls.base_model_prefix not in dict(model.params_shape_tree["params"]) |
|
and cls.base_model_prefix in state["params"] |
|
): |
|
state["params"] = state["params"][cls.base_model_prefix] |
|
state["batch_stats"] = state["batch_stats"][cls.base_model_prefix] |
|
|
|
|
|
|
|
if ( |
|
cls.base_model_prefix in dict(model.params_shape_tree["params"]) |
|
and cls.base_model_prefix not in state["params"] |
|
): |
|
state = { |
|
"params": {cls.base_model_prefix: state["params"]}, |
|
"batch_stats": {cls.base_model_prefix: state["batch_stats"]}, |
|
} |
|
|
|
else: |
|
|
|
if cls.base_model_prefix not in dict(model.params_shape_tree) and cls.base_model_prefix in state: |
|
state = state[cls.base_model_prefix] |
|
|
|
|
|
|
|
if cls.base_model_prefix in dict(model.params_shape_tree) and cls.base_model_prefix not in state: |
|
state = {cls.base_model_prefix: state} |
|
|
|
|
|
state = flatten_dict(state) |
|
|
|
random_state = flatten_dict(unfreeze(model.params if _do_init else model.params_shape_tree)) |
|
|
|
missing_keys = model.required_params - set(state.keys()) |
|
unexpected_keys = set(state.keys()) - model.required_params |
|
|
|
|
|
for unexpected_key in unexpected_keys.copy(): |
|
if "num_batches_tracked" in unexpected_key[-1]: |
|
unexpected_keys.remove(unexpected_key) |
|
|
|
if missing_keys and not _do_init: |
|
logger.warning( |
|
f"The checkpoint {pretrained_model_name_or_path} is missing required keys: {missing_keys}. " |
|
"Make sure to call model.init_weights to initialize the missing weights." |
|
) |
|
cls._missing_keys = missing_keys |
|
|
|
|
|
|
|
mismatched_keys = [] |
|
for key in state.keys(): |
|
if key in random_state and state[key].shape != random_state[key].shape: |
|
if ignore_mismatched_sizes: |
|
mismatched_keys.append((key, state[key].shape, random_state[key].shape)) |
|
state[key] = random_state[key] |
|
else: |
|
raise ValueError( |
|
f"Trying to load the pretrained weight for {key} failed: checkpoint has shape " |
|
f"{state[key].shape} which is incompatible with the model shape {random_state[key].shape}. " |
|
"Using `ignore_mismatched_sizes=True` if you really want to load this checkpoint inside this " |
|
"model." |
|
) |
|
|
|
|
|
if missing_keys and _do_init: |
|
for missing_key in missing_keys: |
|
state[missing_key] = random_state[missing_key] |
|
|
|
|
|
for unexpected_key in unexpected_keys: |
|
del state[unexpected_key] |
|
|
|
if len(unexpected_keys) > 0: |
|
logger.warning( |
|
f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when" |
|
f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are" |
|
f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task or" |
|
" with another architecture (e.g. initializing a BertForSequenceClassification model from a" |
|
" BertForPreTraining model).\n- This IS NOT expected if you are initializing" |
|
f" {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly identical" |
|
" (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)." |
|
) |
|
else: |
|
logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n") |
|
|
|
if len(missing_keys) > 0: |
|
logger.warning( |
|
f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at" |
|
f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably" |
|
" TRAIN this model on a down-stream task to be able to use it for predictions and inference." |
|
) |
|
elif len(mismatched_keys) == 0: |
|
logger.info( |
|
f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at" |
|
f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the checkpoint" |
|
f" was trained on, you can already use {model.__class__.__name__} for predictions without further" |
|
" training." |
|
) |
|
if len(mismatched_keys) > 0: |
|
mismatched_warning = "\n".join( |
|
[ |
|
f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated" |
|
for key, shape1, shape2 in mismatched_keys |
|
] |
|
) |
|
logger.warning( |
|
f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at" |
|
f" {pretrained_model_name_or_path} and are newly initialized because the shapes did not" |
|
f" match:\n{mismatched_warning}\nYou should probably TRAIN this model on a down-stream task to be able" |
|
" to use it for predictions and inference." |
|
) |
|
|
|
|
|
param_dtypes = jax.tree_util.tree_map(lambda x: x.dtype, state) |
|
|
|
fp16_params = [k for k in param_dtypes if param_dtypes[k] == jnp.float16] |
|
bf16_params = [k for k in param_dtypes if param_dtypes[k] == jnp.bfloat16] |
|
|
|
|
|
if len(fp16_params) > 0: |
|
logger.warning( |
|
f"Some of the weights of {model.__class__.__name__} were initialized in float16 precision from " |
|
f"the model checkpoint at {pretrained_model_name_or_path}:\n{fp16_params}\n" |
|
"You should probably UPCAST the model weights to float32 if this was not intended. " |
|
"See [`~FlaxPreTrainedModel.to_fp32`] for further information on how to do this." |
|
) |
|
|
|
if len(bf16_params) > 0: |
|
logger.warning( |
|
f"Some of the weights of {model.__class__.__name__} were initialized in bfloat16 precision from " |
|
f"the model checkpoint at {pretrained_model_name_or_path}:\n{bf16_params}\n" |
|
"You should probably UPCAST the model weights to float32 if this was not intended. " |
|
"See [`~FlaxPreTrainedModel.to_fp32`] for further information on how to do this." |
|
) |
|
|
|
|
|
if model.can_generate(): |
|
try: |
|
model.generation_config = GenerationConfig.from_pretrained( |
|
pretrained_model_name_or_path, |
|
cache_dir=cache_dir, |
|
force_download=force_download, |
|
resume_download=resume_download, |
|
proxies=proxies, |
|
local_files_only=local_files_only, |
|
token=token, |
|
revision=revision, |
|
subfolder=subfolder, |
|
_from_auto=from_auto_class, |
|
_from_pipeline=from_pipeline, |
|
**kwargs, |
|
) |
|
except OSError: |
|
logger.info( |
|
"Generation config file not found, using a generation config created from the model config." |
|
) |
|
pass |
|
|
|
if _do_init: |
|
|
|
model.params = unflatten_dict(state) |
|
return model |
|
else: |
|
return model, unflatten_dict(state) |
|
|
|
def save_pretrained( |
|
self, |
|
save_directory: Union[str, os.PathLike], |
|
params=None, |
|
push_to_hub=False, |
|
max_shard_size="10GB", |
|
token: Optional[Union[str, bool]] = None, |
|
**kwargs, |
|
): |
|
""" |
|
Save a model and its configuration file to a directory, so that it can be re-loaded using the |
|
`[`~FlaxPreTrainedModel.from_pretrained`]` class method |
|
|
|
Arguments: |
|
save_directory (`str` or `os.PathLike`): |
|
Directory to which to save. Will be created if it doesn't exist. |
|
push_to_hub (`bool`, *optional*, defaults to `False`): |
|
Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the |
|
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your |
|
namespace). |
|
max_shard_size (`int` or `str`, *optional*, defaults to `"10GB"`): |
|
The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size |
|
lower than this size. If expressed as a string, needs to be digits followed by a unit (like `"5MB"`). |
|
|
|
<Tip warning={true}> |
|
|
|
If a single weight of the model is bigger than `max_shard_size`, it will be in its own checkpoint shard |
|
which will be bigger than `max_shard_size`. |
|
|
|
</Tip> |
|
|
|
token (`str` or `bool`, *optional*): |
|
The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use |
|
the token generated when running `huggingface-cli login` (stored in `~/.huggingface`). |
|
kwargs (`Dict[str, Any]`, *optional*): |
|
Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method. |
|
""" |
|
use_auth_token = kwargs.pop("use_auth_token", None) |
|
|
|
if use_auth_token is not None: |
|
warnings.warn( |
|
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning |
|
) |
|
if token is not None: |
|
raise ValueError( |
|
"`token` and `use_auth_token` are both specified. Please set only the argument `token`." |
|
) |
|
token = use_auth_token |
|
|
|
if token is not None: |
|
kwargs["token"] = token |
|
|
|
if os.path.isfile(save_directory): |
|
logger.error(f"Provided path ({save_directory}) should be a directory, not a file") |
|
return |
|
|
|
os.makedirs(save_directory, exist_ok=True) |
|
|
|
if push_to_hub: |
|
commit_message = kwargs.pop("commit_message", None) |
|
repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1]) |
|
repo_id = self._create_repo(repo_id, **kwargs) |
|
files_timestamps = self._get_files_timestamps(save_directory) |
|
|
|
|
|
save_directory = os.path.abspath(save_directory) |
|
|
|
self.config.architectures = [self.__class__.__name__[4:]] |
|
|
|
|
|
|
|
if self._auto_class is not None: |
|
custom_object_save(self, save_directory, config=self.config) |
|
|
|
self.config.save_pretrained(save_directory) |
|
if self.can_generate(): |
|
self.generation_config.save_pretrained(save_directory) |
|
|
|
|
|
output_model_file = os.path.join(save_directory, FLAX_WEIGHTS_NAME) |
|
|
|
shards, index = flax_shard_checkpoint(params if params is not None else self.params, max_shard_size) |
|
|
|
for filename in os.listdir(save_directory): |
|
full_filename = os.path.join(save_directory, filename) |
|
if ( |
|
filename.startswith(FLAX_WEIGHTS_NAME[:-4]) |
|
and os.path.isfile(full_filename) |
|
and filename not in shards.keys() |
|
): |
|
os.remove(full_filename) |
|
|
|
if index is None: |
|
with open(output_model_file, "wb") as f: |
|
params = params if params is not None else self.params |
|
model_bytes = to_bytes(params) |
|
f.write(model_bytes) |
|
|
|
else: |
|
save_index_file = os.path.join(save_directory, FLAX_WEIGHTS_INDEX_NAME) |
|
|
|
with open(save_index_file, "w", encoding="utf-8") as f: |
|
content = json.dumps(index, indent=2, sort_keys=True) + "\n" |
|
f.write(content) |
|
logger.info( |
|
f"The model is bigger than the maximum size per checkpoint ({max_shard_size}) and is going to be " |
|
f"split in {len(shards)} checkpoint shards. You can find where each parameters has been saved in the " |
|
f"index located at {save_index_file}." |
|
) |
|
for shard_file, shard in shards.items(): |
|
|
|
with open(os.path.join(save_directory, shard_file), mode="wb") as f: |
|
params = unflatten_dict(shard, sep="/") |
|
shard_bytes = to_bytes(params) |
|
f.write(shard_bytes) |
|
|
|
logger.info(f"Model weights saved in {output_model_file}") |
|
|
|
if push_to_hub: |
|
self._upload_modified_files( |
|
save_directory, |
|
repo_id, |
|
files_timestamps, |
|
commit_message=commit_message, |
|
token=token, |
|
) |
|
|
|
@classmethod |
|
def register_for_auto_class(cls, auto_class="FlaxAutoModel"): |
|
""" |
|
Register this class with a given auto class. This should only be used for custom models as the ones in the |
|
library are already mapped with an auto class. |
|
|
|
<Tip warning={true}> |
|
|
|
This API is experimental and may have some slight breaking changes in the next releases. |
|
|
|
</Tip> |
|
|
|
Args: |
|
auto_class (`str` or `type`, *optional*, defaults to `"FlaxAutoModel"`): |
|
The auto class to register this new model with. |
|
""" |
|
if not isinstance(auto_class, str): |
|
auto_class = auto_class.__name__ |
|
|
|
import transformers.models.auto as auto_module |
|
|
|
if not hasattr(auto_module, auto_class): |
|
raise ValueError(f"{auto_class} is not a valid auto class.") |
|
|
|
cls._auto_class = auto_class |
|
|
|
|
|
|
|
FlaxPreTrainedModel.push_to_hub = copy_func(FlaxPreTrainedModel.push_to_hub) |
|
if FlaxPreTrainedModel.push_to_hub.__doc__ is not None: |
|
FlaxPreTrainedModel.push_to_hub.__doc__ = FlaxPreTrainedModel.push_to_hub.__doc__.format( |
|
object="model", object_class="FlaxAutoModel", object_files="model checkpoint" |
|
) |
|
|
|
|
|
def overwrite_call_docstring(model_class, docstring): |
|
|
|
model_class.__call__ = copy_func(model_class.__call__) |
|
|
|
model_class.__call__.__doc__ = None |
|
|
|
model_class.__call__ = add_start_docstrings_to_model_forward(docstring)(model_class.__call__) |
|
|
|
|
|
def append_call_sample_docstring(model_class, checkpoint, output_type, config_class, mask=None): |
|
model_class.__call__ = copy_func(model_class.__call__) |
|
model_class.__call__ = add_code_sample_docstrings( |
|
checkpoint=checkpoint, |
|
output_type=output_type, |
|
config_class=config_class, |
|
model_cls=model_class.__name__, |
|
)(model_class.__call__) |
|
|
|
|
|
def append_replace_return_docstrings(model_class, output_type, config_class): |
|
model_class.__call__ = copy_func(model_class.__call__) |
|
model_class.__call__ = replace_return_docstrings( |
|
output_type=output_type, |
|
config_class=config_class, |
|
)(model_class.__call__) |
|
|