# https://huggingface.co/spaces/yilmazmusa_ml/abstract_summarizer # Here are the imports import warnings import pdfplumber import torch from transformers import pipeline, AutoProcessor, AutoModel import numpy as np import gradio as gr from io import BytesIO from scipy.io.wavfile import write as write_wav warnings.filterwarnings("ignore") # Here is the code def extract_abstract(uploaded_file): pdf_bytes = BytesIO(uploaded_file) with pdfplumber.open(pdf_bytes) as pdf: abstract = "" # Iterate through each page for page in pdf.pages: text = page.extract_text(x_tolerance = 1, y_tolerance = 1) # these parameters are set 1 in order to get spaces between words and lines # Search for the "Abstract" keyword if "abstract" in text.lower(): # Found the "Abstract" keyword start_index = text.lower().find("abstract") # find the "abstract" title as starter index end_index = text.lower().find("introduction") # find the "introduction" title as end index abstract = text[start_index:end_index] break print(abstract) return abstract def process_summary(summary): # Split the summary by the first period summary = summary[0]["summary_text"] sentences = summary.split('.', 1) if len(sentences) > 0: # Retrieve the first part before the period processed_summary = sentences[0].strip() + "." # Replace "-" with an empty string processed_summary = processed_summary.replace("-", "") return processed_summary # Function for summarization and audio conversion def summarize_and_convert_to_audio(pdf_file): device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(device) # Move models and related tensors to CUDA device if available processor = AutoProcessor.from_pretrained("suno/bark") model = AutoModel.from_pretrained("suno/bark").to(device) # Extract abstract abstract_text = extract_abstract(pdf_file) if not abstract_text: return "No 'abstract' section found in the uploaded PDF. Please upload a different PDF." # Summarize the abstract summarization_pipeline = pipeline(task='summarization', model='knkarthick/MEETING_SUMMARY', min_length=15, max_length=30) summarized_text = summarization_pipeline(abstract_text) one_sentence_summary = process_summary(summarized_text) # Text-to-audio conversion inputs = processor( text=[one_sentence_summary], return_tensors="pt", ) inputs = inputs.to(device) speech_values = model.generate(**inputs, do_sample=True) sampling_rate = model.generation_config.sample_rate # Convert speech values to audio data audio_data = speech_values.cpu().numpy().squeeze() # Convert audio data to bytes with BytesIO() as buffer: write_wav(buffer, sampling_rate, audio_data.astype(np.float32)) audio_bytes = buffer.getvalue() return audio_bytes # Return audio as bytes # Create a Gradio interface iface = gr.Interface( fn=summarize_and_convert_to_audio, inputs=gr.UploadButton(label="Upload PDF", type="bytes", file_types=["pdf"]), # Set to accept only PDF files outputs=gr.Audio(label="Audio"), title="PDF Abstract Summarizer", description="Upload a PDF with an abstract to generate a summarized audio." ) iface.launch()