yeq6x commited on
Commit
f901151
·
1 Parent(s): f459619
Files changed (1) hide show
  1. app.py +4 -3
app.py CHANGED
@@ -141,7 +141,7 @@ def outpaint_image(image):
141
  return image
142
 
143
  @spaces.GPU
144
- def predict_image(cond_image, prompt, negative_prompt):
145
  print("predict position map")
146
  global pipe
147
  generator = torch.Generator()
@@ -157,7 +157,7 @@ def predict_image(cond_image, prompt, negative_prompt):
157
  num_inference_steps=20,
158
  generator=generator,
159
  guess_mode = True,
160
- controlnet_conditioning_scale = 0.6,
161
  ).images[0]
162
 
163
  return image
@@ -175,6 +175,7 @@ with gr.Blocks() as demo:
175
  img2 = gr.Image(type="pil", label="map Image", height=300)
176
  prompt = gr.Textbox("position map, 1girl, white background", label="Prompt")
177
  negative_prompt = gr.Textbox("lowres, bad anatomy, bad hands, bad feet, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry", label="Negative Prompt")
 
178
  predict_map_btn = gr.Button("Predict Position Map")
179
  visualize_3d_btn = gr.Button("Generate 3D Point Cloud")
180
  with gr.Column():
@@ -188,7 +189,7 @@ with gr.Blocks() as demo:
188
  )
189
 
190
  img1.input(outpaint_image, inputs=img1, outputs=img1)
191
- predict_map_btn.click(predict_image, inputs=[img1, prompt, negative_prompt], outputs=img2)
192
  visualize_3d_btn.click(visualize_3d, inputs=[img2, img1], outputs=reconstruction_output)
193
 
194
  demo.launch()
 
141
  return image
142
 
143
  @spaces.GPU
144
+ def predict_image(cond_image, prompt, negative_prompt, controlnet_conditioning_scale):
145
  print("predict position map")
146
  global pipe
147
  generator = torch.Generator()
 
157
  num_inference_steps=20,
158
  generator=generator,
159
  guess_mode = True,
160
+ controlnet_conditioning_scale = controlnet_conditioning_scale,
161
  ).images[0]
162
 
163
  return image
 
175
  img2 = gr.Image(type="pil", label="map Image", height=300)
176
  prompt = gr.Textbox("position map, 1girl, white background", label="Prompt")
177
  negative_prompt = gr.Textbox("lowres, bad anatomy, bad hands, bad feet, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry", label="Negative Prompt")
178
+ controlnet_conditioning_scale = gr.Slider(label="ControlNet conditioning scale", minimum=0.1, maximum=2.0, value=0.6, step=0.05)
179
  predict_map_btn = gr.Button("Predict Position Map")
180
  visualize_3d_btn = gr.Button("Generate 3D Point Cloud")
181
  with gr.Column():
 
189
  )
190
 
191
  img1.input(outpaint_image, inputs=img1, outputs=img1)
192
+ predict_map_btn.click(predict_image, inputs=[img1, prompt, negative_prompt, controlnet_conditioning_scale], outputs=img2)
193
  visualize_3d_btn.click(visualize_3d, inputs=[img2, img1], outputs=reconstruction_output)
194
 
195
  demo.launch()