Spaces:
Runtime error
Runtime error
File size: 1,171 Bytes
ceb898d be85e03 b9ed281 ceb898d 70ff502 b9ed281 ceb898d fb6a0a0 be85e03 fb6a0a0 be85e03 ceb898d be85e03 70ff502 be85e03 ceb898d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
import gradio as gr
from transformers import ViTImageProcessor, AutoModelForImageClassification
from PIL import Image
import requests
# Load the model and processor
processor = ViTImageProcessor.from_pretrained('AdamCodd/vit-base-nsfw-detector')
model = AutoModelForImageClassification.from_pretrained('AdamCodd/vit-base-nsfw-detector')
# Define prediction function
def predict_image(image_url):
try:
# Load image from URL
image = Image.open(requests.get(image_url, stream=True).raw)
# Process the image and make prediction
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
# Get predicted class
predicted_class_idx = logits.argmax(-1).item()
predicted_label = model.config.id2label[predicted_class_idx]
return predicted_label
except Exception as e:
return str(e)
# Create Gradio interface
iface = gr.Interface(
fn=predict_image,
inputs=gr.Textbox(label="Image URL"),
outputs=gr.Textbox(label="Predicted Class"),
title="NSFW Image Classifier"
)
# Launch the interface
iface.launch() |