Yash Sachdeva commited on
Commit
e5e2748
·
1 Parent(s): 4b73894

quuestion_paper

Browse files
Files changed (1) hide show
  1. question_paper.py +31 -44
question_paper.py CHANGED
@@ -1,47 +1,34 @@
1
- from pydantic import BaseModel
 
 
 
2
 
3
- from .ConfigEnv import config
4
- from fastapi.middleware.cors import CORSMiddleware
 
 
 
 
 
5
 
6
- from langchain.llms import Clarifai
7
- from langchain.chains import LLMChain
8
- from langchain.prompts import PromptTemplate
9
- from TextGen import app
10
 
11
- class Generate(BaseModel):
12
- text:str
13
-
14
- def generate_text(prompt: str):
15
- if prompt == "":
16
- return {"detail": "Please provide a prompt."}
17
- else:
18
- prompt = PromptTemplate(template=prompt, input_variables=['Prompt'])
19
- llm = Clarifai(
20
- pat = config.CLARIFAI_PAT,
21
- user_id = config.USER_ID,
22
- app_id = config.APP_ID,
23
- model_id = config.MODEL_ID,
24
- model_version_id=config.MODEL_VERSION_ID,
25
- )
26
- llmchain = LLMChain(
27
- prompt=prompt,
28
- llm=llm
29
- )
30
- llm_response = llmchain.run({"Prompt": prompt})
31
- return Generate(text=llm_response)
32
-
33
- app.add_middleware(
34
- CORSMiddleware,
35
- allow_origins=["*"],
36
- allow_credentials=True,
37
- allow_methods=["*"],
38
- allow_headers=["*"],
39
- )
40
-
41
- @app.get("/", tags=["Home"])
42
- def api_home():
43
- return {'detail': 'Welcome to FastAPI TextGen Tutorial!'}
44
-
45
- @app.post("/api/generate", summary="Generate text from prompt", tags=["Generate"], response_model=Generate)
46
- def inference(input_prompt: str):
47
- return generate_text(prompt=input_prompt)
 
1
+ import time
2
+ import copy
3
+ import asyncio
4
+ import requests
5
 
6
+ from fastapi import FastAPI, Request
7
+ from llama_cpp import Llama
8
+ from sse_starlette import EventSourceResponse
9
+ # Load the model
10
+ print("Loading model...")
11
+ llm = Llama(model_path="./llama-2-13b-chat.ggmlv3.q4_1.bin") # change based on the location of models
12
+ print("Model loaded!")
13
 
14
+ app = FastAPI()
 
 
 
15
 
16
+ @app.get("/llama")
17
+ async def llama(request: Request, question:str):
18
+ stream = llm(
19
+ f"""{question}""",
20
+ max_tokens=100,
21
+ stop=["\n", " Q:"],
22
+ stream=True,
23
+ )
24
+ async def async_generator():
25
+ for item in stream:
26
+ yield item
27
+ async def server_sent_events():
28
+ async for item in async_generator():
29
+ if await request.is_disconnected():
30
+ break
31
+ result = copy.deepcopy(item)
32
+ text = result["choices"][0]["text"]
33
+ yield {"data": text}
34
+ return EventSourceResponse(server_sent_events())